Acceso abierto

Comparison of methods for deriving neural progenitor cells from nonhuman primate embryonic stem cells


Cite

Carpenter MK, Cui X, Hu Z-y, Jackson J, Sherman S, Seiger A, et al. In vitro expansion of a multipotent population of human neural progenitor cells. Exp Neurol. 1999; 158:265–78.1041513510.1006/exnr.1999.7098CarpenterMKCui XHuZ-yJackson JSherman SSeiger Aet alIn vitro expansion of a multipotent population of human neural progenitor cellsExp Neurol199915826578Search in Google Scholar

Roy NS, Wang S, Jiang L, Kang J, Benraiss A, Harrison-Restelli C, et al. In vitro neurogenesis by progenitor cells isolated from the adult human hippocampus. Nat Med. 2000; 6:271–7.1070022810.1038/73119RoyNSWang SJiang LKang JBenraiss AHarrison-Restelli Cet alIn vitro neurogenesis by progenitor cells isolated from the adult human hippocampusNat Med200062717Search in Google Scholar

Li S, Sun G, Murai K, Ye P, Shi Y. Characterization of TLX expression in neural stem cells and progenitor cells in adult brains. PLoS One. 2012; 7:e43324.10.1371/journal.pone.004332422952666Li SSun GMurai KYe PShiYCharacterization of TLX expression in neural stem cells and progenitor cells in adult brainsPLoS One20127e43324Open DOISearch in Google Scholar

Cho M-S, Hwang D-Y, Kim D-W. Efficient derivation of functional dopaminergic neurons from human embryonic stem cells on a large scale. Nat Protoc. 2008; 3:1888–94.10.1038/nprot.2008.18819008875ChoM-SHwangD-YKimD-WEfficient derivation of functional dopaminergic neurons from human embryonic stem cells on a large scaleNat Protoc20083188894Open DOISearch in Google Scholar

Itskovitz-Eldor J, Schuldiner M, Karsenti D, Eden A, Yanuka O, Amit M, et al. Differentiation of human embryonic stem cells into embryoid bodies comprising the three embryonic germ layers. Mol Med. 2000; 6: 88–95.10859025Itskovitz-Eldor JSchuldiner MKarsenti DEden AYanuka OAmit Met alDifferentiation of human embryonic stem cells into embryoid bodies comprising the three embryonic germ layersMol Med20006889510.1007/BF03401776Search in Google Scholar

Carpenter MK, Inokuma MS, Denham J, Mujtaba T, Chiu C-P, Rao MS. Enrichment of neurons and neural precursors from human embryonic stem cells. Exp Neurol. 2001; 172:383–97.10.1006/exnr.2001.783211716562CarpenterMKInokumaMSDenham JMujtaba TChiuC-PRaoMSEnrichment of neurons and neural precursors from human embryonic stem cellsExp Neurol200117238397Open DOISearch in Google Scholar

Schuldiner M, Eiges R, Eden A, Yanuka O, Itskovitz-Eldor J, Goldstein RS, et al. Induced neuronal differentiation of human embryonic stem cells. Brain Res. 2001; 913:201–5.10.1016/S0006-8993(01)02776-711549388Schuldiner MEiges REden AYanuka OItskovitz-Eldor JGoldsteinRSet alInduced neuronal differentiation of human embryonic stem cellsBrain Res20019132015Open DOISearch in Google Scholar

Kramer J, Hegert C, Guan K, Wobus AM, Müller PK, Rohwedel J. Embryonic stem cell-derived chondrogenic differentiation in vitro: activation by BMP-2 and BMP-4. Mech Dev. 2000; 92:193–205.1072785810.1016/S0925-4773(99)00339-1Kramer JHegert CGuan KWobusAMMüllerPKRohwedelJEmbryonic stem cell-derived chondrogenic differentiation in vitro: activation by BMP-2 and BMP-4Mech Dev200092193205Search in Google Scholar

Chadwick K, Wang L, Li L, Menendez P, Murdoch B, Rouleau A, et al. Cytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem cells. Blood. 2003; 102:906–15.10.1182/blood-2003-03-083212702499Chadwick KWang LLi LMenendez PMurdoch BRouleau Aet alCytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem cellsBlood200310290615Open DOISearch in Google Scholar

Sachlos E, Auguste DT. Embryoid body morphology influences diffusive transport of inductive biochemicals: A strategy for stem cell differentiation. Biomaterials. 2008; 29:4471–80.10.1016/j.biomaterials.2008.08.01218793799Sachlos EAugusteDTEmbryoid body morphology influences diffusive transport of inductive biochemicals: A strategy for stem cell differentiation Biomaterials200829447180Open DOISearch in Google Scholar

Erceg S, Lainez S, Ronaghi M, Stojkovic P, Perez-Arago MA, Moreno-Manzano V, et al. Differentiation of human embryonic stem cells to regional specific neural precursors in chemically defined medium conditions. PLoS One. 2008; 3:e2122.1846116810.1371/journal.pone.0002122Erceg SLainez SRonaghi MStojkovic PPerez-AragoMAMoreno-Manzano Vet alDifferentiation of human embryonic stem cells to regional specific neural precursors in chemically defined medium conditionsPLoS One20083e2122Search in Google Scholar

Dhara SK, Hasneen K, Machacek DW, Boyd NL, Rao RR, Stice SL. Human neural progenitor cells derived from embryonic stem cells in feeder-free cultures. Differentiation. 2008; 76:454–64.1817742010.1111/j.1432-0436.2007.00256.xDharaSKHasneen KMachacekDWBoydNLRaoRRSticeSLHuman neural progenitor cells derived from embryonic stem cells in feeder-free culturesDifferentiation20087645464Search in Google Scholar

Carter RL, Chen Y, Kunkanjanawan T, Xu Y, Moran SP Putkhao K, et al. Reversal of cellular phenotypes in neural cell derived from Huntington’s disease monkey-induced pluripotent stem cells. Stem Cell Reports. 2014; 3:1–9.CarterRLChen YKunkanjanawan TXu YMoranSPPutkhao Ket alReversal of cellular phenotypes in neural cell derived from Huntington’s disease monkey-induced pluripotent stem cellsStem Cell Reports201431910.1016/j.stemcr.2014.07.011Search in Google Scholar

Evrard C, Caron S, Rouget P. Functional analysis of the NPDC-1 gene. Gene. 2004; 343:153–63.10.1016/j.gene.2004.08.02015563841Evrard CCaron SRougetP.Functional analysis of the NPDC-1 geneGene200434315363Open DOISearch in Google Scholar

Patro N, Naik A, Patro IK. Differential temporal expression of S100β in developing rat brain. Front Cell Neurosci. 2015; 9:87.Patro NNaik APatroIKDifferential temporal expression of S1000 in developing rat brainFront Cell Neurosci201598710.3389/fncel.2015.00087Search in Google Scholar

Shi Y, Lie C, Taupin P, Nakashima K, Ray J, Yu RT, et al. Expression and function of orphan nuclear receptor TLX in adult neural stem cells. Nature. 2004; 427:78–83.1470208810.1038/nature02211Shi YLie CTaupin PNakashima KRay JYuRTet alExpression and function of orphan nuclear receptor TLX in adult neural stem cellsNature20044277883Search in Google Scholar

Wang Y, Liu HK, Schutz G. Role of the nuclear receptor Tailless in adult neural stem cells. Mech Dev. 2013; 130:388–90.2341583210.1016/j.mod.2013.02.001Wang YLiuHKSchutzG.Role of the nuclear receptor Tailless in adult neural stem cellsMech Dev201313038890Search in Google Scholar

Elmi M, Matsumoto Y, Zeng Z-j, Lakshminarasimhan P, Yang W, Uemura A, et al. TLX activates MASH1 for induction of neuronal lineage commitment of adult hippocampal neuroprogenitors. Mol Cell Neurosci. 2010; 45:121–31.2059961910.1016/j.mcn.2010.06.003Elmi MMatsumoto YZengZ-jLakshminarasimhan PYang WUemura Aet alTLX activates MASH1 for induction of neuronal lineage commitment of adult hippocampal neuroprogenitorsMol Cell Neurosci20104512131Search in Google Scholar

Calhoun JD, Lambert NA, Mitalipova MM, Noggle SA, Lyons I, Condie BG, et al. Differentiation of rhesus embryonic stem cells to neural progenitors and neurons. Bio Chem Bioph Res Co. 2003; 306: 191–7.10.1016/S0006-291X(03)00937-9CalhounJDLambertNAMitalipovaMMNoggleSALyons ICondieBGet alDifferentiation of rhesus embryonic stem cells to neural progenitors and neuronsBio Chem Bioph Res Co20033061917Open DOISearch in Google Scholar

Kuo H-C, Pau K-YF, Yeoman RR, Mitalipov SM, Okano H, Wolf DP. Differentiation of monkey embryonic stem cells into neural lineages. Biol Reprod. 2003; 68:1727–35.10.1095/biolreprod.102.01219512606331KuoH-CPauK-YFYeomanRRMitalipovSMOkano HWolfDPDifferentiation of monkey embryonic stem cells into neural lineagesBiol Reprod200368172735Open DOISearch in Google Scholar

Tibbitts D, Rao RR, Shin S, West FD, Stice SL. Uniform adherent neural progenitor populations from rhesus embryonic stem cells. Stem Cells Dev. 2006; 15:200–8.1664666610.1089/scd.2006.15.200Tibbitts DRaoRRShin SWestFDSticeSLUniform adherent neural progenitor populations from rhesus embryonic stem cellsStem Cells Dev2006152008Search in Google Scholar

Baharvand H, Mehrjardi NZ, Hatami M, Kiani S, Rao M, Haghighi MM. Neural differentiation from human embryonic stem cells in a defined adherent culture condition. Int J Dev Biol. 2007; 51:371–8.10.1387/ijdb.072280hbBaharvand HMehrjardiNZHatami MKiani SRao MHaghighiMMNeural differentiation from human embryonic stem cells in a defined adherent culture conditionInt J Dev Biol2007513718Open DOISearch in Google Scholar

Zhou J-M, Chu J-X, Chen X-J. An improved protocol that induces human embryonic stem cells to differentiate into neural cells in vitro. Cell Biol Int. 2008; 32:80–5.1794551710.1016/j.cellbi.2007.08.015ZhouJ-MChuJ-XChenX-JAn improved protocol that induces human embryonic stem cells to differentiate into neural cells in vitroCell Biol Int200832805Search in Google Scholar

Li X-J, Du Z-W, Zarnowska ED, Pankratz M, Hansen LO, Pearce RA, et al. Specification of motoneurons from human embryonic stem cells. Nat Biotechnol. 2005; 23:215–21.1568516410.1038/nbt1063LiX-JDuZ-WZarnowskaEDPankratz MHansenLOPearceRAet alSpecification of motoneurons from human embryonic stem cellsNat Biotechnol20052321521Search in Google Scholar

Gerrard L, Rodgers L, Cui W. Differentiation of human embryonic stem cells to neural lineages in adherent culture by blocking bone morphogenetic protein signaling. Stem Cells. 2005; 23:1234–41.1600278310.1634/stemcells.2005-0110Gerrard LRodgers LCuiWDifferentiation of human embryonic stem cells to neural lineages in adherent culture by blocking bone morphogenetic protein signalingStem Cells200523123441Search in Google Scholar

Sonntag K-C, Pruszak J, Yoshizaki T, Arensbergen JV Sanchez-Pernaute R, Isacson O. Enhanced yield of neuroepithelial precursors and midbrain-like dopaminergic neurons from human embryonic stem cells using the bone morphogenic protein antagonist noggin. Stem cells. 2007; 25:411–8.1703866810.1634/stemcells.2006-0380SonntagK-CPruszak JYoshizaki TArensbergenJVSanchez-Pernaute RIsacsonOEnhanced yield of neuroepithelial precursors and midbrain-like dopaminergic neurons from human embryonic stem cells using the bone morphogenic protein antagonist nogginStem cells2007254118Search in Google Scholar

Tropepe V, Sibilia M, Ciruna BG, Rossant J, Wagner EF, van der Kooy D. Distinct neural stem cells proliferate in response to EGF and FGF in the developing mouse telencephalon. Dev Biol. 1999; 208: 166–88.1007585010.1006/dbio.1998.9192Tropepe VSibilia MCirunaBGRossant JWagnerEFvan der KooyDDistinct neural stem cells proliferate in response to EGF and FGF in the developing mouse telencephalonDev Biol199920816688Search in Google Scholar

Lenka N, Ramasamy SK. Neural induction from ES cells portrays default commitment but instructive maturation. PLoS One. 2007; 2:e1349.1809200710.1371/journal.pone.0001349Lenka NRamasamySKNeural induction from ES cells portrays default commitment but instructive maturationPLoS One20072e1349Search in Google Scholar

Babu H, Cheung G, Kettenmann H, Palmer TD, Kempermann G. Enriched monolayer precursor cell cultures from micro-dissected adult mouse dentate gyrus yield functional granule cell-like neurons. PLoS One. 2007; 4:e388.Babu HCheung GKettenmann HPalmerTDKempermannGEnriched monolayer precursor cell cultures from micro-dissected adult mouse dentate gyrus yield functional granule cell-like neuronsPLoS One20074e38810.1371/journal.pone.0000388Search in Google Scholar

Main H, Radenkovic J, Jin SB, Lendahl U, Andersson ER. Notch signaling maintains neural rosette polarity.PLoS One. 2013; 8:e62959. 40.10.1371/journal.pone.006295923675446Main HRadenkovic JJinSBLendahl UAnderssonERNotch signaling maintains neural rosette polarityPLoS One20138e6295940Open DOISearch in Google Scholar

Zappone MV, Galli R, Catena R, Meani N, De Biasi S, Mattei E, et al. Sox2 regulatory sequences direct expression of a β-geo transgene to telencephalic neural stem cells and precursors of the mouse embryo, revealing regionalization of gene expression in CNS stem cells. Development. 2000; 127:2367–2382.ZapponeMVGalli RCatena RMeani NDe Biasi SMattei Eet alSox2 regulatory sequences direct expression of a β-geo transgene to telencephalic neural stem cells and precursors of the mouse embryorevealing regionalization of gene expression in CNS stem cells. Development20001272367238210.1242/dev.127.11.2367Search in Google Scholar

Ellis P, Fagan BM, Magness ST, Hutton S, Taranova O, Hayashi S, et al. SOX2, a persistent marker for multipotential neural stem cells derived from embryonic stem cells, the embryo or the adult. Dev Neurosci. 2004; 26:148–65.10.1159/00008213415711057Ellis PFaganBMMagnessSTHutton STaranova OHayashi Set alSOX2, a persistent marker for multipotential neural stem cells derived from embryonic stem cells, the embryo or the adultDev Neurosci20042614865Open DOISearch in Google Scholar

Kaneko Y, Sakakibara S, Imai T, Suzuki A, Nakamura Y, Sawamoto K, et al. Musashi1: An evolutionally conserved marker for CNS progenitor cells including neural stem cells. Dev Neurosci. 2000; 22:139–53.10.1159/00001743510657706Kaneko YSakakibara SImai TSuzuki ANakamura YSawamoto Ket alMusashi1: An evolutionally conserved marker for CNS progenitor cells including neural stem cellsDev Neurosci20002213953Open DOISearch in Google Scholar

Kallur T, Gisler R, Lindvall O, Kokaia Z. Pax6 promotes neurogenesis in human neural stem cells. Mol Cell Neurosci. 2008; 38:616–28.1859573210.1016/j.mcn.2008.05.010Kallur TGisler RLindvall OKokaiaZPax6 promotes neurogenesis in human neural stem cellsMol Cell Neurosci20083861628Search in Google Scholar

Zhang X, Huang CT, Chen J, Pankratz MT, Xi J, Li J, et al. Pax6 is a human neuroectoderm cell fate determinant. Cell Stem Cell. 2010; 7:90–100.10.1016/j.stem.2010.04.01720621053Zhang XHuangCTChen JPankratzMTXi JLi Jet alPax6 is a human neuroectoderm cell fate determinantCell Stem Cell2010790100Open DOISearch in Google Scholar

Park D, Xiang AP, Mao FF, Zhang L, Di C-G Liu X-M, et al. Nestin is required for the proper self-renewal of neural stem cells. Stem Cells. 2010; 28:2162–71.10.1002/stem.54120963821Park DXiangAPMaoFFZhang LDiC-GLiuX-Met alNestin is required for the proper self-renewal of neural stem cellsStem Cells201028216271Open DOISearch in Google Scholar

Abe K, Niwa H, Iwase K, Takiguchi M, Mori M, Abe S-I, et al. Endoderm-specific gene expression in embryonic stem cells differentiated to embryoid bodies.Exp Cell Res. 1996; 229; 1:27–34.10.1006/excr.1996.03408940246Abe KNiwa HIwase KTakiguchi MMori MAbeS-Iet alEndoderm-specific gene expression in embryonic stem cells differentiated to embryoid bodiesExp Cell Res199622912734Open DOISearch in Google Scholar

Sellem CH, Frain M, Erdos T, Sala-Trepat J. Differential expression of albumin and a-fetoprotein genes in fetal tissues of mouse and rat. Dev Biol. 1984; 102: 51–60.10.1016/0012-1606(84)90174-XSellemCHFrain MErdos TSala-TrepatJDifferential expression of albumin and a-fetoprotein genes in fetal tissues of mouse and ratDev Biol19841025160Open DOISearch in Google Scholar

Makover A, Soprano DR, Wyatt ML, Goodman DS.An in situ-hybridization study of the localization of retinol-binding protein and transthyretin messenger RNAs during fetal development in the rat. Differentiation. 2006; 40:17–25.Makover ASopranoDRWyattMLGoodmanDSAn in situ-hybridization study of the localization of retinol-binding protein and transthyretin messenger RNAs during fetal development in the ratDifferentiation200640172510.1111/j.1432-0436.1989.tb00809.xSearch in Google Scholar

Fujikura J, Yamato E, Yonemura S, Hosoda K, Masui S, Nakao K, et al. Differentiation of embryonic stem cells is induced by GATA factors. Genes Dev. 2002; 16:784–9.10.1101/gad.96880211937486Fujikura JYamato EYonemura SHosoda KMasui SNakao Ket alDifferentiation of embryonic stem cells is induced by GATA factorsGenes Dev2002167849Open DOISearch in Google Scholar

Rojas A, Val SD, Heidt AB, Xu S-M, Bristow J, Black BL. Gata4 expression in lateral mesoderm is downstream of BMP4 and is activated directly by Forkhead and GATA transcription factors through a distal enhancer element. Development. 2005; 132: 3405–17.10.1242/dev.0191315987774Rojas AValSDHeidtABXuS-MBristow JBlackBLGata4 expression in lateral mesoderm is downstream of BMP4 and is activated directly by Forkhead and GATA transcription factors through a distal enhancer elementDevelopment2005132340517Open DOISearch in Google Scholar

Haigh JJ. Role of VEGF in organogenesis. Organogenesis. 2008; 4:247–56.10.4161/org.4.4.741519337405HaighJJRole of VEGF in organogenesisOrganogenesis2008424756Open DOISearch in Google Scholar

Okuda T, DeursenJv, Hiebert SW, Grosveld G, Downing JR. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell. 1996; 84:321–30.10.1016/S0092-8674(00)80986-18565077Okuda TDeursenJvHiebertSWGrosveld GDowningJRAML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesisCell19968432130Open DOISearch in Google Scholar

Antasa VI, Al-Drees MA, Prudence AJA, Sugiyama D, Fraser ST. Hemogenic endothelium: A vessel for blood production. Int J Biochem Cell Biol. 2013; 45:692–5.10.1016/j.biocel.2012.12.01323270729AntasaVIAl-DreesMAPrudenceAJASugiyama DFraserSTHemogenic endothelium: A vessel for blood productionInt J Biochem Cell Biol2013456925Open DOISearch in Google Scholar

Raponi E, Agenes F, Delphin C, Assard N, Baudier J, Legraverend C, et al. S100B expression defines a state in which GFAP expressing cells lose their neural stem cell potential and acquire a more mature developmental stage. Glia. 2007; 55:165–77.10.1002/glia.20445Raponi EAgenes FDelphin CAssard NBaudier JLegraverend Cet alS100B expression defines a state in which GFAP expressing cells lose their neural stem cell potential and acquire a more mature developmental stageGlia20075516577Open DOISearch in Google Scholar

Sun Y, Pollard S, Conti L, Toselli M, Biella G Parkin G et al. Long-term tripotent differentiation capacity of human neural stem (NS) cells in adherent culture. Mol Cell Neurosci. 2008; 38:245–58.1845047610.1016/j.mcn.2008.02.014Sun YPollard SConti LToselli MBiellaGParkinGet alLong-term tripotent differentiation capacity of human neural stem (NS) cells in adherent cultureMol Cell Neurosci20083824558Search in Google Scholar

Niu W, Zou Y, Shen C, Zhang C-L. Activation of postnatal neural stem cells requires nuclear receptor TLX. J Neurosci. 2011; 3:13816–28.Niu WZou YShen CZhangC-LActivation of postnatal neural stem cells requires nuclear receptor TLXJ Neurosci20113138162810.1523/JNEUROSCI.1038-11.2011Search in Google Scholar

Wianny F, Bourillot P-Y, Dehay C. Embryonic stem cells in non-human primates: An overview of neural differentiation potential. Differentiation. 2011; 1: 142–52.Wianny FBourillotP-YDehayCEmbryonic stem cells in non-human primates: An overview of neural differentiation potentialDifferentiation201111425210.1016/j.diff.2011.01.008Search in Google Scholar

eISSN:
1875-855X
Idioma:
Inglés
Calendario de la edición:
6 veces al año
Temas de la revista:
Medicine, Assistive Professions, Nursing, Basic Medical Science, other, Clinical Medicine