Acceso abierto

A high-MUFA diet alone does not affect ketone body metabolism, but reduces glycated hemoglobin when combined with exercise training in diabetic rats


Cite

Wolfsdorf J, Glaser N, Sperling MA. Diabetic ketoacidosis in infants, children, and adolescents: A consensus statement from the American Diabetes Association. Diabetes Care. 2006; 29:1150-9.1664465610.2337/dc06-9909WolfsdorfJGlaserNSperlingMA.Diabetic ketoacidosis in infants, children, and adolescents: A consensus statement from the American Diabetes AssociationDiabetes Care.20062911509Search in Google Scholar

Saraceni C, Broderick TL. Cardiac and metabolic consequences of aerobic exercise training in experimental diabetes. Curr Diabetes Rev. 2007; 3: 75-84.1822065810.2174/157339907779802111SaraceniCBroderickTL.Cardiac and metabolic consequences of aerobic exercise training in experimental diabetesCurr Diabetes Rev.200737584Search in Google Scholar

Dall’Aglio E, Chang F, Chang H, Stern J, Reaven G. Effect of exercise and diet on triglyceride metabolism in rats with moderate insulin deficiency. Diabetes. 1983; 32:46-50.10.2337/diab.32.1.466336702Dall’AglioEChangFChangHSternJReavenG.Effect of exercise and diet on triglyceride metabolism in rats with moderate insulin deficiencyDiabetes.1983324650Open DOISearch in Google Scholar

Nakai N, Miyazaki Y, Sato Y, Oshida Y, Nagasaki M, Tanaka M, et al. Exercise training increases the activity of pyruvate dehydrogenase complex in skeletal muscle of diabetic rats. Endocr J. 2002;49:547-54.1250727310.1507/endocrj.49.547NakaiNMiyazakiYSatoYOshidaYNagasakiMTanakaMExercise training increases the activity of pyruvate dehydrogenase complex in skeletal muscle of diabetic ratsEndocr J.20024954754Search in Google Scholar

Ozkaya YG, Agar A, Hacioglu G, Yargicoglu P. Exercise improves visual deficits tested by visual evoked potentials in streptozotocin-induced diabetic rats. Tohoku J Exper Med. 2007; 213:313-21.10.1620/tjem.213.313OzkayaYGAgarAHaciogluGYargicogluP.Exercise improves visual deficits tested by visual evoked potentials in streptozotocin-induced diabetic ratsTohoku J Exper Med.200721331321Open DOISearch in Google Scholar

Goodyear LJ, Hirshman MF, Knutson SM, Horton ED, Horton ES. Effect of exercise training on glucose homeostasis in normal and insulin-deficient diabetic rats. J Appl Physiol. 1988; 65:844-51.3049514GoodyearLJHirshmanMFKnutsonSMHortonEDHortonES.Effect of exercise training on glucose homeostasis in normal and insulin-deficient diabetic ratsJ Appl Physiol.1988658445110.1152/jappl.1988.65.2.844Search in Google Scholar

El Midaoui A, Tancrède G, Nadeau A. Effect of physical training on mitochondrial function in skeletal muscle of normal and diabetic rats. Metabolism. 1996; 45:810-6.10.1016/S0026-0495(96)90151-18692013El MidaouiATancrèdeGNadeauA.Effect of physical training on mitochondrial function in skeletal muscle of normal and diabetic ratsMetabolism.1996458106Open DOISearch in Google Scholar

Lang C, Berardi S, Schäfer M, Serra D, Hegardt FG, Krähenbühl L et al. Impaired ketogenesis is a major mechanism for disturbed hepatic fatty acid metabolism in rats with long-term cholestasis and after relief of biliary obstruction. J Hepatol. 2002; 37:564-71.10.1016/S0168-8278(02)00248-912399220LangCBerardiSSchäferMSerraDHegardtFGKrähenbühlLImpaired ketogenesis is a major mechanism for disturbed hepatic fatty acid metabolism in rats with long-term cholestasis and after relief of biliary obstructionJ Hepatol.20023756471Open DOISearch in Google Scholar

El Midaoui A, Chiasson L, Tancrède G, Nadeau A. Physical training reverses defect in 3-ketoacid CoA-transferase activity in skeletal muscle of diabetic rats. Am J Physiol Endocrinol Metab. 2005; 288: E748-52.15774485El MidaouiAChiassonLTancrèdeGNadeauA.Physical training reverses defect in 3-ketoacid CoAtransferase activity in skeletal muscle of diabetic ratsAm J Physiol Endocrinol Metab.2005288E7485210.1152/ajpendo.00515.200415774485Search in Google Scholar

El Midaoui A, Chiasson L, Tancrède G, Nadeau A. Physical training reverses the increased activity of the hepatic ketone body synthesis pathway in chronically diabetic rats. Am J Physiol Endocrinol Metab. 2006; 290:E207-12.16403781El MidaouiAChiassonLTancrèdeGNadeauA.Physical training reverses the increased activity of the hepatic ketone body synthesis pathway in chronically diabetic ratsAm J Physiol Endocrinol Metab2006290E2071210.1152/ajpendo.00608.200416403781Search in Google Scholar

Garg A. High-monounsaturated-fat diets for patients with diabetes mellitus: a meta-analysis. Am J Clin Nutr. 1998; 67:577S-82S.GargA.High-monounsaturated-fat diets for patients with diabetes mellitus: a meta-analysisAm J Clin Nutr.199867577S82S10.1093/ajcn/67.3.577S9497173Search in Google Scholar

Schwingshackl L, Strasser B, Hoffmann G. Effects of monounsaturated fatty acids on glycaemic control in patients with abnormal glucose metabolism: a systematic review and meta-analysis. Ann Nutr Metab. 2011; 58:290-6.10.1159/00033121421912106SchwingshacklLStrasserBHoffmannG.Effects of monounsaturated fatty acids on glycaemic control in patients with abnormal glucose metabolism: a systematic review and meta-analysisAnn Nutr Metab.201158290621912106Open DOISearch in Google Scholar

Yokoyama J, Someya Y, Yoshihara R, Ishi H. Effects of high-monounsaturated fatty acid enteral formula versus high-carbohydrate enteral formula on plasma glucose concentration and insulin secretion in healthy individuals and diabetic patients. J Int Med Res. 2008; 36:137-46.10.1177/14732300080360011718230277YokoyamaJSomeyaYYoshiharaRIshiH.Effects of high-monounsaturated fatty acid enteral formula versus high-carbohydrate enteral formula on plasma glucose concentration and insulin secretion in healthy individuals and diabetic patientsJ Int Med Res.2008361374618230277Open DOISearch in Google Scholar

Kotake J, Tanaka Y, Umehara N, Miyashita A, Tsuru T, Hikida S et al. Effects of a high-monounsaturated fat diet on glucose and lipid metabolism in normal and diabetic mice. J Nutr Sci Vitaminol (Tokyo). 2004; 50: 106-13.1524201410.3177/jnsv.50.106KotakeJTanakaYUmeharaNMiyashitaATsuruTHikidaSEffects of a high-monounsaturated fat diet on glucose and lipid metabolism in normal and diabetic miceJ Nutr Sci Vitaminol (Tokyo).2004501061315242014Search in Google Scholar

Ramesh B, Saravanan R, Pugalendi KV. Effect of dietary substitution of groundnut oil on blood glucose, lipid profile, and redox status in streptozotocin-diabetic rats. Yale J Biol Med. 2006; 79: 9-17.17876371RameshBSaravananRPugalendiKV.Effect of dietary substitution of groundnut oil on blood glucose, lipid profile, and redox status in streptozotocin-diabetic ratsYale J Biol Med.200679917Search in Google Scholar

Rocca AS, Brubaker PL. Stereospecific effects of fatty acids on proglucagon-derived peptide secretion in fetal rat intestinal cultures. Endocrinology. 1995; 136:5593-9.10.1210/endo.136.12.75883137588313RoccaASBrubakerPL.Stereospecific effects of fatty acids on proglucagon-derived peptide secretion in fetal rat intestinal culturesEndocrinology.1995136559397588313Open DOISearch in Google Scholar

Paniagua JA, de la Sacristana AG, Sánchez E, Romero I, Vidal-Puig A, Berral FJ et al. A MUFA-rich diet improves posprandial glucose, lipid and GLP-1 responses in insulin-resistant subjects. J Am Coll Nutr. 2007; 26:434-44.10.1080/07315724.2007.1071963317914131PaniaguaJAde la SacristanaAGSánchezERomeroIVidal-PuigABerralFJA MUFA-rich diet improves posprandial glucose, lipid and GLP-1 responses in insulin-resistant subjectsJ Am Coll Nutr.2007264344417914131Open DOISearch in Google Scholar

Rakieten N, Rakieten ML, Nadkarni MV. Study on the diabetogenic action of streptozotocin (NSC-37917). Cancer Chemother Rep. 1963; 29:91-8.RakietenNRakietenMLNadkarniMV.Study on the diabetogenic action of streptozotocin (NSC-37917)Cancer Chemother Rep.196329918Search in Google Scholar

Lynen F, Henning U, Bublitz C, Sorbo B, Kroplin-Rueff L. The chemical mechanism of acetic acid formation in the liver. Biochem Z. 1958; 330:269-95.13596371LynenFHenningUBublitzCSorboBKroplin-RueffL.The chemical mechanism of acetic acid formation in the liverBiochem Z.195833026995Search in Google Scholar

Royo T, Ayté J, Albericio F, Giralt E, Haro D, Hegardt FG. Diurnal rhythm of rat liver cytosolic 3-hydroxy-3-methylglutaryl-CoA synthase. Biochem J. 1991; 280: 61-4.168376910.1042/bj2800061RoyoTAytéJAlbericioFGiraltEHaroDHegardtFG.Diurnal rhythm of rat liver cytosolic 3-hydroxy-3-methylglutaryl-CoA synthaseBiochem J.199128061411306001683769Search in Google Scholar

Nosadini R, Avogaro A, Doria A, Foretto P, Trevisan P, Morocutti A. Ketone body metabolism: a physiological and clinical overview. Diabetes Metab Rev. 1989; 5:299-319.10.1002/dmr.56100503072656158NosadiniRAvogaroADoriaAForettoPTrevisanPMorocuttiA.Ketone body metabolism: a physiological and clinical overviewDiabetes Metab Rev.198952993192656158Open DOISearch in Google Scholar

Williamson DH, Bates MW, Page MA, Krebs HA. Activities of enzymes involved in acetoacetate utilization in adult mammalian tissues. Biochem J. 1971; 121:41-7.10.1042/bj12100415165621WilliamsonDHBatesMWPageMAKrebsHA.Activities of enzymes involved in acetoacetate utilization in adult mammalian tissuesBiochem J.197112141711764845165621Open DOISearch in Google Scholar

Rebrin I, Brégère C, Kamzalov S, Gallaher TK, Sohal RS. Nitration of tryptophan 372 in succinyl-CoA:3-ketoacid CoA transferase during aging in rat heart mitochondria. Biochemistry. 2007; 46:10130-44.10.1021/bi700148217685555RebrinIBrégèreCKamzalovSGallaherTKSohalRS.Nitration of tryptophan 372 in succinyl-CoA:3-ketoacid CoA transferase during aging in rat heart mitochondriaBiochemistry.2007461013044252631617685555Open DOISearch in Google Scholar

Schauff DJ, Clark JH. Effects of feeding diets containing calcium salts of long-chain fatty acid to lactating dairy cows. J Dairy Sci. 1992; 75:2990-3002.146013110.3168/jds.S0022-0302(92)78063-1SchauffDJClarkJH.Effects of feeding diets containing calcium salts of long-chain fatty acid to lactating dairy cowsJ Dairy Sci.19927529903002Search in Google Scholar

Christensen RA, Drackley JK, LaCount DW, Clark JH. Infusion of four long-chain fatty acid mixtures into the abomasum of lactating dairy cows. J Dairy Sci. 1994; 77:1052-69.10.3168/jds.S0022-0302(94)77041-78201041ChristensenRADrackleyJKLaCountDWClarkJH.Infusion of four long-chain fatty acid mixtures into the abomasum of lactating dairy cowsJ Dairy Sci.199477105269Open DOISearch in Google Scholar

Scharrer E, Langhans W. Control of food intake by fatty acid oxidation. Am J Physiol. 1986; 250:R1003-6.3717372ScharrerELanghansW.Control of food intake by fatty acid oxidationAm J Physiol.1986250R1003610.1152/ajpregu.1986.250.6.R10033717372Search in Google Scholar

Palmquist DL. The role of dietary fats in efficiency of ruminants. J Nutr. 1994; 124:1377S-82S.PalmquistDL.The role of dietary fats in efficiency of ruminantsJ Nutr.19941241377S82SSearch in Google Scholar

Choi BR, Palmquist DL. High fat diets increase plasma cholecystokinin and pancreatic polypeptide, and decrease plasma insulin and feed intake in lactating cows. J Nutr. 1996; 126:2913-9.8914965ChoiBRPalmquistDL.High fat diets increase plasma cholecystokinin and pancreatic polypeptide, and decrease plasma insulin and feed intake in lactating cowsJ Nutr.199612629139Search in Google Scholar

Kien CL, Bunn JY, Ugrasbul F. Increasing dietary palmitic acid decreases fat oxidation and daily energy expenditure. Am J Clin Nutr. 2005; 82:320-6.16087974KienCLBunnJYUgrasbulF.Increasing dietary palmitic acid decreases fat oxidation and daily energy expenditureAm J Clin Nutr.200582320610.1093/ajcn/82.2.320Search in Google Scholar

Kien CL, Bunn JY, Tompkins CL, Dumas JA, Crain KI, Ebenstein DB et al. Substituting dietary monounsaturated fat for saturated fat is associated with increased daily physical activity and resting energy expenditure and with changes in mood. Am J Clin Nutr. 2013; 97:689-97.2344689110.3945/ajcn.112.051730KienCLBunnJYTompkinsCLDumasJACrainKIEbensteinDBSubstituting dietary monounsaturated fat for saturated fat is associated with increased daily physical activity and resting energy expenditure and with changes in moodAm J Clin Nutr.20139768997360765023446891Search in Google Scholar

Ros E. Dietary cis-monounsaturated fatty acids and metabolic control in type 2 diabetes. Am J Clin Nutr. 2003; 78:617S-25S.RosE.Dietary cis-monounsaturated fatty acids and metabolic control in type 2 diabetesAm J Clin Nutr.200378617S25S10.1093/ajcn/78.3.617S12936956Search in Google Scholar

Severson DL, Hurley B. Inhibition of hormone-sensitive lipase in adipose tissue by long-chain fatty acyl coenzyme A. Lipids. 1984; 19:134-8.10.1007/BF025345046323907SeversonDLHurleyB.Inhibition of hormone-sensitive lipase in adipose tissue by long-chain fatty acyl coenzyme ALipids.19841913486323907Open DOISearch in Google Scholar

Lim EL, Hollingsworth KG, Aribisala BS, Chen MJ, Mathers JC, Taylor R. Reversal of type 2 diabetes: normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol. Diabetologia. 2011; 54:2506-14.10.1007/s00125-011-2204-721656330LimELHollingsworthKGAribisalaBSChenMJMathersJCTaylorR.Reversal of type 2 diabetes: normalisation of beta cell function in association with decreased pancreas and liver triacylglycerolDiabetologia.201154250614316874321656330Open DOISearch in Google Scholar

Reaven GM, Chang F. Effect of exercise-training on the metabolic manifestations of streptozotocininduced diabetes in the rat. Diabetologia. 1981; 21: 415-7.ReavenGMChangF.Effect of exercise-training on the metabolic manifestations of streptozotocininduced diabetes in the ratDiabetologia.1981214157Search in Google Scholar

Tan MH, Bonen A, Garner JB, Belcastro AN. Physical training in diabetic rats: effect on glucose tolerance ad serum lipids. J Appl Physiol Respir Environ Exerc Physiol. 1982; 52:1514-8.TanMHBonenAGarnerJBBelcastroAN.Physical training in diabetic rats: effect on glucose tolerance ad serum lipidsJ Appl Physiol Respir Environ Exerc Physiol.1982521514810.1152/jappl.1982.52.6.15147107460Search in Google Scholar

Tancrède G, Rousseau-Migneron S, Nadeau A. Beneficial effects of physical training in rats with a mild streptozotocin-induced diabetes mellitus. Diabetes. 1982; 31:406-9.675925710.2337/diab.31.5.406TancrèdeGRousseau-MigneronSNadeauA.Beneficial effects of physical training in rats with a mild streptozotocin-induced diabetes mellitusDiabetes.19823140696759257Search in Google Scholar

Mokhtar N, Lavoie JP, Rousseau-Migneron S, Nadeau A. Physical training reverses defect in mitochondrial energy production in heart of chronically diabetic rats. Diabetes. 1993; 42:682-7.10.2337/diab.42.5.6828482425MokhtarNLavoieJPRousseau-MigneronSNadeauA.Physical training reverses defect in mitochondrial energy production in heart of chronically diabetic ratsDiabetes.19934268278482425Open DOISearch in Google Scholar

Vallerand AL, Lupien J, Deshaies Y, Bukowiecki LJ. Intensive exercise training does not improve intravenous glucose tolerance in severely diabetic rats. Horm Metab Res. 1986; 18:79-81.351682610.1055/s-2007-1012236VallerandALLupienJDeshaiesYBukowieckiLJ.Intensive exercise training does not improve intravenous glucose tolerance in severely diabetic ratsHorm Metab Res.19861879813516826Search in Google Scholar

Manning PJ, Sutherland WH, Hendry G, de Jong SA, McGrath M, Williams SM. Changes in circulating postprandial proinflammatory cytokine concentrations in diet-controlled type 2 diabetes and the effect of ingested fat. Diabetes Care. 2004; 27:2509-11.1545192910.2337/diacare.27.10.2509ManningPJSutherlandWHHendryGde JongSAMcGrathMWilliamsSM.Changes in circulating postprandial proinflammatory cytokine concentrations in diet-controlled type 2 diabetes and the effect of ingested fatDiabetes Care.20042725091115451929Search in Google Scholar

eISSN:
1875-855X
Idioma:
Inglés
Calendario de la edición:
6 veces al año
Temas de la revista:
Medicine, Assistive Professions, Nursing, Basic Medical Science, other, Clinical Medicine