Cite

1. Perini R, Veicsteinas A. Heart rate variability and autonomic activity at rest and during exercise in various physiological conditions. Eur J Appl Physiol. 2003; 90: 317-25.10.1007/s00421-003-0953-913680241Open DOISearch in Google Scholar

2. Lu CL, Shidler N, Chen JD. Enhanced postprandial gastric myoelectrical activity after moderate-intensity exercise. Am J Gastroenterol. 2000; 95:425-31.10.1111/j.1572-0241.2000.01762.x10685745Search in Google Scholar

3. Perini R, Orizio C, Baselli G, Cerutti S, Veicsteinas A. The influence of exercise intensity on the power spectrum of heart rate variability. Eur J Appl Physiol Occup Physiol. 1990; 61:143-8.10.1007/BF002367092289492Search in Google Scholar

4. Alom MM, Bhuiyan NI, Hossain MM, Hoque MF, Rozario RJ, Nessa W. Physical training induced resting bradycardia and its association with cardiac autonomic nervous activities. Mymensingh Med J. 2011; 20: 665-70.Search in Google Scholar

5. Smout AJ, van der Schee EJ, Grashuis JL. What is measured in electrogastrography? Dig Dis Sci. 1980; 25:179-87.10.1007/BF013081367371462Open DOISearch in Google Scholar

6. Sztajzel J. Heart rate variability: a noninvasive electrocardiographic method to measure the autonomic nervous system. Swiss Med Wkly. 2004; 134:514-22.Search in Google Scholar

7. Burr RL. Interpretation of normalized spectral heart rate variability indices in sleep research: a critical review. Sleep. 2007; 30:913-9.10.1093/sleep/30.7.913197837517682663Search in Google Scholar

8. Kucera P, Goldenberg Z, Kurca E. Sympathetic skin response: review of the method and its clinical use. Bratisl Lek Listy. 2004; 105:108-16.Search in Google Scholar

9. Chen JD, Co E, Liang J, Pan J, Sutphen J, Torres-Pinedo RB, et al. Patterns of gastric myoelectrical activity in human subjects of different ages. Am J Physiol. 1997; 272:G1022-7.10.1152/ajpgi.1997.272.5.G10229176209Search in Google Scholar

10. Chen JD, Zou X, Lin X, Ouyang S, Liang J. Detection of gastric slow wave propagation from the cutaneous electrogastrogram. Am J Physiol. 1999; 277:G424-3010.1152/ajpgi.1999.277.2.G42410444457Search in Google Scholar

11. Chen JZ. EGG parameters and their clinical significance. In: McCallum RW, editor. Electrogastrography: Principles and Applications. 3rd ed. New York: Raven; 1994. p. 45-73.Search in Google Scholar

12. Sandercock GR, Brodie DA. The use of heart rate variability measures to assess autonomic control during exercise. Scand J Med Sci Sports. 2006; 16: 302-13.10.1111/j.1600-0838.2006.00556.x16774653Open DOISearch in Google Scholar

13. Pietraszek S, Komorowski D. The simultaneous recording and analysis both EGG and HRV signals. Conf Proc IEEE Eng Med Biol Soc. 2009; 2009:396-9.10.1109/IEMBS.2009.533345519963965Search in Google Scholar

14. Faussone-Pellegrini MS, Pantalone D, Cortesini C. An ultrastructural study of the interstitial cells of Cajal of the human stomach. J Submicrosc Cytol Pathol. 1989; 21:439-60.Search in Google Scholar

15. Huizinga JD, Thuneberg L, Kluppel M, Malysz J, Mikkelsen HB, Bernstein A. W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature. 1995; 373:347-9.10.1038/373347a07530333Search in Google Scholar

16. Gomez-Pinilla PJ, Gibbons SJ, Bardsley MR, Lorincz A, Pozo MJ, Pasricha PJ, et al. Ano1 is a selective marker of interstitial cells of Cajal in the human and mouse gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol. 2009; 296:G1370-81.10.1152/ajpgi.00074.2009Search in Google Scholar

17. el-Sharkawy TY, Morgan KG, Szurszewski JH. Intracellular electrical activity of canine and human gastric smooth muscle. J Physiol. 1978; 279:291-307.10.1113/jphysiol.1978.sp012345Search in Google Scholar

18. el-Sharkawy TY, Szurszewski JH. Modulation of canine antral circular smooth muscle by acetylcholine, noradrenaline and pentagastrin. J Physiol. 1978; 279: 309-20.10.1113/jphysiol.1978.sp012346Search in Google Scholar

19. Hirst GD, Dickens EJ, Edwards FR. Pacemaker shift in the gastric antrum of guinea-pigs produced by excitatory vagal stimulation involves intramuscular interstitial cells. J Physiol. 2002; 541:917-28.10.1113/jphysiol.2002.018614Search in Google Scholar

20. Fox EA, Phillips RJ, Martinson FA, Baronowsky EA, Powley TL. Vagal afferent innervation of smooth muscle in the stomach and duodenum of the mouse: morphology and topography. J Comp Neurol. 2000; 428:558-76.10.1002/1096-9861(20001218)428:3<558::AID-CNE11>3.0.CO;2-MSearch in Google Scholar

21. Powley TL, Wang XY, Fox EA, Phillips RJ, Liu LW, Huizinga JD. Ultrastructural evidence for communication between intramuscular vagal mechanoreceptors and interstitial cells of Cajal in the rat fundus. Neurogastroenterol Motil. 2008; 20:69-79.Search in Google Scholar

22. Sauder KA, Johnston ER, Skulas-Ray AC, Campbell TS, West SG. Effect of meal content on heart rate variability and cardiovascular reactivity to mental stress. Psychophysiology. 2012; 49:470-7.10.1111/j.1469-8986.2011.01335.xOpen DOISearch in Google Scholar

23. Kato M, Sakai T, Yabe K, Miyamura M, Soya H. Gastric myoelectrical activity increases after moderateintensity exercise with no meals under suppressed vagal nerve activity. Jpn J Physiol. 2004; 54:221-8.10.2170/jjphysiol.54.221Open DOISearch in Google Scholar

24. Chang CS, Ko CW, Lien HC, Chou MC. Varying postprandial abdominovagal and cardiovagal activity in normal subjects. Neurogastroenterol Motil. 2010; 22:546-51, e119.Search in Google Scholar

25. Charlot K, Pichon A, Chapelot D. Exercise prior to a freely requested meal modifies pre and postprandial glucose profile, substrate oxidation and sympathovagal balance. Nutr Metab (Lond). 2011; 8:66.10.1186/1743-7075-8-66Open DOISearch in Google Scholar

26. Levy WC, Cerqueira MD, Harp GD, Johannessen KA, Abrass IB, Schwartz RS, et al. Effect of endurance exercise training on heart rate variability at rest in healthy young and older men. Am J Cardiol. 1998; 82: 1236-41.10.1016/S0002-9149(98)00611-0Open DOISearch in Google Scholar

27. Boutcher SH, Stein P. Association between heart rate variability and training response in sedentary middleaged men. Eur J Appl Physiol Occup Physiol. 1995; 70: 75-80.10.1007/BF00601812Open DOISearch in Google Scholar

28. Gamelin FX, Berthoin S, Sayah H, Libersa C, Bosquet L. Effect of training and detraining on heart rate variability in healthy young men. Int J Sports Med. 2007; 28:564-70.10.1055/s-2007-96486117373601Open DOISearch in Google Scholar

29. Pagani M, Somers V, Furlan R, Dell’Orto S, Conway J, Baselli G, et al. Changes in autonomic regulation induced by physical training in mild hypertension. Hypertension. 1988; 12:600-10.10.1161/01.HYP.12.6.600Open DOISearch in Google Scholar

30. Pichot V, Busso T, Roche F, Garet M, Costes F, Duverney D, et al. Autonomic adaptations to intensive and overload training periods: a laboratory study. Med Sci Sports Exerc. 2002; 34:1660-6. 10.1097/00005768-200210000-0001912370569Open DOISearch in Google Scholar

31. Rennie KL, Hemingway H, Kumari M, Brunner E, Malik M, Marmot M. Effects of moderate and vigorous physical activity on heart rate variability in a British study of civil servants. Am J Epidemiol. 2003; 158: 135-43.10.1093/aje/kwg12012851226Search in Google Scholar

32. Bonnemeier H, Richardt G, Potratz J, Wiegand UK, Brandes A, Kluge N, et al. Circadian profile of cardiac autonomic nervous modulation in healthy subjects: differing effects of aging and gender on heart rate variability. J Cardiovasc Electrophysiol. 2003; 14: 791-9. 10.1046/j.1540-8167.2003.03078.x12890036Open DOISearch in Google Scholar

eISSN:
1875-855X
Idioma:
Inglés
Calendario de la edición:
6 veces al año
Temas de la revista:
Medicine, Assistive Professions, Nursing, Basic Medical Science, other, Clinical Medicine