Acceso abierto

Zróżnicowanie Warunków Bioklimatycznych Między Centrum Lublina I Obszarem Podmiejskim W Półroczu Letnim

,  y   
20 sept 2024

Cite
Descargar portada

Bartoszek K., Kaszewski B.M., 2022, Changes in the frequency and temperature of air masses over east-central Europe, International Journal of Climatology, 42, 16, 8214–8231, DOI: 10.1002/joc.7704. Search in Google Scholar

Bartoszek K., Matuszko D., Węglarczyk S., 2021, Trends in sunshine duration in Poland (1971–2018), International Journal of Climatology, 41, 1, 73–91, DOI: 10.1002/joc.6609. Search in Google Scholar

Błażejczyk K., 2004, Bioklimatyczne uwarunkowania rekreacji i turystyki w Polsce, Prace Geograficzne IGiPZ PAN, 192, Warszawa. Search in Google Scholar

Błażejczyk K., Kunert A., 2011, Bioklimatyczne uwarunkowania rekreacji i turystyki w Polsce, Monografie IGiPZ PAN, 13, Warszawa. Search in Google Scholar

Błażejczyk K., Twardosz R., 2010, Long-term changes of bioclimatic conditions in Cracow (Poland), [w:] R. Przybylak, J. Majorowicz, R. Brázdil, M. Kejna (red.), In The Polish Climate in the European Context: An Historical Overview, Springer, Dordrecht, 235–246, DOI: 10.1007/978-90-481-3167-9 10. Search in Google Scholar

Bokwa A., 2009, Miejska wyspa ciepła na tle naturalnego zróżnicowania termicznego obszaru położonego we wklęsłej formie terenu (na przykładzie Krakowa), Prace Geograficzne, 122, 111–132. Search in Google Scholar

Charalampopoulos I., Tsiros I., Chronopoulou-Sereli A., Matzarakis A., 2012, Analysis of thermal bioclimate in various urban configurations in Athens, Greece, Urban Ecosystems, 16, 217–233, DOI: 10.1007/s11252-012-0252-5. Search in Google Scholar

Chojnacka-Ożga L., Ożga W., 2013, Ocena warunków wypoczynku człowieka nad zbiornikiem wodnym w świetle wybranych wskaźników bioklimatycznych – na przykładzie Zbiornika Sulejowskiego, Studia i Materiały CEPL w Rogowie, 15, 37, 239–244. Search in Google Scholar

Ciaranek D., 2013, Weather and circulation types accompanying thermal and humidity conditions unfavourable to the human health in summer in Krakow (Poland), Aerul şi Apa. Componente ale Mediului, 2013, 323–329. Search in Google Scholar

d’Ambrosio Alfano F.R., Palalla B.I., Riccio G., 2011, Thermal Environment Assessment Reliability Using Temperature-Humidity Indices, Industrial Health, 49, 95–106, DOI: 10.2486/indhealth.MS1097. Search in Google Scholar

Dobek M., Siłuch M., Wereski S., Bartoszek K., Skiba K., 2008, Czas trwania i częstość występowania uciążliwych warunków bioklimatycznych w Lublinie na podstawie wskaźnika Humidex, [w:] K. Kłysik, J. Wibig, K. Fortuniak (red.), Klimat i bioklimat miast, Wydawnictwo Uniwersytetu Łódzkiego, Łódź, 415–422. Search in Google Scholar

Fallah-Ghalhari G., Farhang Dehghan S., Asghari M. 2022.Trend analysis of Humidex as a heat discomfort index using Mann-Kendall and Sen’s slope estimator statistical tests, Environmental Health. Engineering and Management Journal, 9, 2, 165–176, DOI: 10.34172/EHEM.2022.18. Search in Google Scholar

García M.C., 2019, Thermal Differences, Comfort/Discomfort and Humidex Summer Climate in Mar del Plata, Argentina, [w:] C. Henríquez, H. Romero (red.), Urban Climates in Latin America, Springer, Cham, 83–109, DOI: 10.1007/978-3-319-97013-4 5. Search in Google Scholar

Geletič J., Lehnert M., Savić S., Milošević D., 2018, Modelled spatiotemporal variability of outdoor thermal comfort in local climate zones of the city of Brno, Czech Republic, Science of the Total Environment, 624, 385–395, DOI: 10.1016/j.scitotenv.2017.12.076. Search in Google Scholar

Górniak A., 2021, Klimat województwa podlaskiego w czasie globalnego ocieplenia, Wydawnictwo Uniwersytetu w Białymstoku, Białystok. Search in Google Scholar

Hersbach H., Bell B., Berrisford P., Biavati G., Horányi A., Muñoz Sabater J., Nicolas J., Peubey C., Radu R., Rozum I., Schepers D., Simmons A., Soci C., Dee D., Thépaut J-N., 2023, ERA5 hourly data on single levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS), DOI: 10.24381/cds.adbb2d47. Search in Google Scholar

Kaszewski B.M., 2006, Ocena warunków bioklimatycznych Zwierzyńca za pomocą wskaźnika Humidex, [w:] A. Świeca, K. Kałamucki (red.), Turystyka aktywna i jej rozwój na Roztoczu – regionie pogranicza, Wydawnictwo Kartpol, Lublin, 173–181. Search in Google Scholar

Kendall M.G., 1975, Rank correlation measures, Charles Griffin, London. Search in Google Scholar

Kozłowska-Szczęsna T., Błażejczyk K., Krawczyk B., 1997, Bioklimatologia człowieka. Metody i ich zastosowanie w badaniach bioklimatu Polski, Monografie IGiPZ PAN, 1, Warszawa. Search in Google Scholar

Kravchenko J., Abernethy A.P., Fawzy M., Lyerly H.K., 2013, Minimization of heatwave morbidity and mortality, American Journal of Preventive Medicine, 44, 3, 274–282, DOI: 10.1016/j.amepre.2012.11.015. Search in Google Scholar

Krzeszowiak J., Pawlas K., 2015, Wpływ warunków meteorologicznych na organizm człowieka, Medycyna Środowiskowa, 18, 3, 47–55. Search in Google Scholar

Krzyżewska A., Dyer J., 2019, Local-scale analysis of temperature patterns over Poland during heatwave events, Theoretical and Applied Climatology, 135, 261–277, DOI: 10.1007/s00704-017-2364-6. Search in Google Scholar

Krzyżewska A., Wereski S., Dobek M., 2021, Summer UTCI variability in Poland in the twenty-first century, International Journal of Biometeorology, 65, 1497–1513, DOI: 10.1007/s00484-020-01965-2. Search in Google Scholar

Kuchcik M., 2021, Mortality and thermal environment (UTCI) in Poland – long-term, multi-city study, International Journal of Biometeorology, 65, 1529–1541, DOI: 10.1007/s00484-020-01995-w. Search in Google Scholar

Marosz M., Miętus M., Biernacik D., 2023, Features of multiannual air temperature variability in Poland (1951–2021), Atmosphere, 14, 2, 282, 1–14, DOI: 10.3390/atmos14020282. Search in Google Scholar

Mastrangelo G., Fedeli U., Visentin C., Milan G., Fadda E., Spolaore P., 2007, Pattern and determinants of hospitalization during heat waves: an ecologic study, BMC Public Health, 7, 200, 1–8, DOI: 10.1186/1471-2458-7-200. Search in Google Scholar

Matuszko D., Bartoszek K., Soroka J., 2022, Long-term variability of cloud cover in Poland (1971–2020), Atmospheric Research, 268, 106028, DOI: 10.1016/j.atmosres.2022.106028. Search in Google Scholar

Matuszko D., Piotrowicz K., 2007, Warunki bioklimatyczne, [w:] D. Matuszko (red.), Klimat Krakowa w XX wieku, Instytut Geografii i Gospodarki Przestrzennej Uniwersytetu Jagiellońskiego, Kraków, 169–186. Search in Google Scholar

Mekis É., Vincent L.A., Shephard M.W., Zhang X., 2015, Observed Trends in Severe Weather Conditions Based on Humidex, Wind Chill, and Heavy Rainfall Events in Canada for 1953–2012, Atmosphere–Ocean, 53, 4, 383–397, DOI: 10.1080/07055900.2015.1086970. Search in Google Scholar

Morak S., Hegerl G.C., Kenyon J., 2011, Detectable regional changes in the number of warm nights, Geophysical Research Letters, 38, 17, L17703, DOI: 10.1029/2011GL048531. Search in Google Scholar

Rebetz M., Dupont O., Giroud M., 2009, An analysis of the July 2006 heatwave extent in Europe compared to the record year of 2003, Theoretical and Applied Climatology, 95, 1/2, 1–7, DOI: 10.1007/s00704-007-0370-9. Search in Google Scholar

Sachindra D.A, Nowosad M., 2021, Characteristics of air temperature in Poland from 1994 to 2019 based on hourly data, International Journal of Climatology, 41, 8, 4359–4385, DOI: 10.1002/joc.7077. Search in Google Scholar

Sachindra D.A., Ullah S., Zaborski P., Nowosad M., Dobek M., 2023, Temperature and urban heat island effect in Lublin city in Poland under changing climate, Theoretical and Applied Climatology, 151, 667–690, DOI: 10.1007/s00704-022-04285-0. Search in Google Scholar

Sen P.K., 1968, Estimates of the regression coefficient based on Kendall’s tau, Journal of the American Statistical Association, 63, 324, 1379–1389, DOI: 10.2307/2285891. Search in Google Scholar

Sirangelo B., Caloiero T., Coscarelli R., Ennio Ferrari E., Fusto F., 2020, Combining stochastic models of air temperature and vapour pressure for the analysis of the bioclimatic comfort through the Humidex, Scientific Reports, 10, 11395, DOI: 10.1038/s41598-020-68297-4. Search in Google Scholar

Tomczyk A.M., Bednorz E., 2023, Thermal stress during heat waves and cold spells in Poland, Weather and Climate Extremes, 42, 100612, DOI: 10.1016/j.wace.2023.100612. Search in Google Scholar

Tomczyk A.M., Bednorz E., Matzarakis A., 2020, Human-biometeorological conditions during heat waves in Poland, International Journal of Climatology, 40, 12, 5043–5055, DOI: 10.1002/joc.6503. Search in Google Scholar

Tomczyk A.M., Matzarakis A., 2023, Characteristic of bioclimatic conditions in Poland based on Physiologically Equivalent Temperature, International Journal of Biometeorology, 67, 1991–2009, DOI: 10.1007/s00484-023-02557-6. Search in Google Scholar

Ustrnul Z., Wypych A., Czekierda D., 2021, Air Temperature Change, [w:] M. Falarz (red.), Climate Change in Poland, Springer Climate, 275–330, DOI: 10.1007/978-3-030-70328-8 11. Search in Google Scholar

Vose R.S., Easterling D.R., Gleason B., 2005, Maximum and minimum temperature trends for the globe: An update through 2004, Geophysical Research Letters, 32, 23, L23822, DOI: 10.1029/2005GL024379. Search in Google Scholar

Wu S., Luo M., Zhao R., Li J., Sun P., Liu Z., Wang X., Wang P., Zhang H., 2023, Local mechanisms for global daytime, nighttime, and compound heatwaves, npj Climate and Atmospheric Science, 6, 1, 36, DOI: 10.1038/s41612-023-00365-8. Search in Google Scholar

Wypych A., 2021, Air Humidity Change, [w:] M. Falarz (red.), Climate Change in Poland, Springer Climate, 331–348, DOI: 10.1007/978-3-030-70328-8 12. Search in Google Scholar

Zhang R., Sun C., Zhu J., Zhang R., Li W., 2020, Increased European heat waves in recent decades in response to shrinking Arctic Sea ice and Eurasian snow cover, npj Climate and Atmospheric Science, 3, 7, 1–9, DOI: 10.1038/s41612-020-0110-8. Search in Google Scholar

Zhao H., Yang Y., Feng C., Wang W., Yang C., Yin Y., Gong L., Lin T., 2023, Nonlinear effects of humidex on risk of outpatient visit for allergic conjunctivitis among children and adolescents in Shanghai, China: A time series analysis, Journal of Global Health, 3, 13, 04132, DOI: 10.7189/jogh.13.04132. Search in Google Scholar

Zhou Y., Ji A., Tang E., Liu J., Yao Ch., Liu X., Xu C., Xiao H., Hu Y., Jiang Y, Li D., Du N., Li Y., Zhou L., Cai T., 2023, The role of extreme high humidex in depression in chongqing, China: A time series-analysis, Environmental Research, 222, 115400, 1–10, DOI: 10.1016/j.envres.2023.115400. Search in Google Scholar

Idiomas:
Polonais, Inglés