Acceso abierto

Specific Features of Sorption Kinetics of Heavy Metal Ions with Polysaccharide Materials from Aqueous Media


Cite

[1] Zhao G., W.X., Tan X., Wang X., Sorption of heavy metal ions from aqueous solutions: a review, The Open Colloid Sci J, Vol. 4, 2011, 19–31.10.2174/1876530001104010019Search in Google Scholar

[2] Baral S.S., Das S.N., Rath P., Hexavalent chromium removal from aqueous solution by adsorption on treated sawdust, Biochem Eng J, Vol. 31, 2006, 216–222.10.1016/j.bej.2006.08.003Search in Google Scholar

[3] Ho Y.S., Ng J.C.Y., McKay G., Pseudo-second order model for sorption processes, Process Biochemistry, Vol. 34(5), 1999, 451–465.10.1016/S0032-9592(98)00112-5Search in Google Scholar

[4] Ho Y.S., Ng J.C.Y., McKay G., Kinetics of pollutant sorption by biosorbents: Review, Separation and Purification Methods, Vol. 29(2), 2000, 189–232.10.1081/SPM-100100009Search in Google Scholar

[5] Aydin H., Bulut Y., Yerlikaya C., Removal of copper (II) from aqueous solution by adsorption onto low-cost adsorbents, J Environ Management, Vol. 87, 2008, 37–45.10.1016/j.jenvman.2007.01.005Search in Google Scholar

[6] Sağ Y., Aktay Y., Mass transfer and equilibrium studies for the sorption of chromium ions onto chitin, Process Biochemistry, Vol. 36, 2000, 157–173.10.1016/S0032-9592(00)00200-4Search in Google Scholar

[7] Ho Y.S., Ng J.C.Y., McKay G., Second-order kinetic model for the sorption of cadmium onto tree fern: a comparison of linear and non-linear methods, Water Res, Vol. 40, 2006, 119–125.10.1016/j.watres.2005.10.040Search in Google Scholar

[8] Sharma R.K., Synthesis and characterization of graft copolymers of N-Vinyl-2-Pyrrolidone onto guar gum for sorption of Fe(II) and Cr(VI) ions, Carbohydrate Polymers, Vol. 83, 2011, 29–36.10.1016/j.carbpol.2010.10.068Search in Google Scholar

[9] Ho Y.S., McKay G. Pseudo-second order model for sorption processes, Process Biochemistry, 34, 1999, 451–465.10.1016/S0032-9592(98)00112-5Search in Google Scholar

[10] Farooq U., Kozinski J.A., Khan M.A., Athar M., Biosorption of heavy metal ions using wheat based biosorbents – A review of recent literature, Bioresource Technology, Vol. 101, 2010, 5043–5053.10.1016/j.biortech.2010.02.03020223652Search in Google Scholar

[11] Ho Y.S., Ng J.C.Y., McKay G. Kinetics of pollutant sorption by biosorbents: review, Separ Purif Methods, Vol. 20(2), 2000, 189–232.10.1081/SPM-100100009Search in Google Scholar

[12] Argun M.E., Dursun S., Ozdemir C., Karatas M., Heavy metal adsorption by oak sawdust: thermodynamics and kinetics, J Hazard Mater, Vol. 141, 2007, 77–85.10.1016/j.jhazmat.2006.06.09516879919Search in Google Scholar

[13] Arshad M., Zafar M.N., Younis S., Nadeem R., The use of neem biomass for the biosorption of zinc from aqueous solutions, J Hazard Mater, Vol. 157, 2008, 534–540.10.1016/j.jhazmat.2008.01.01718289783Search in Google Scholar

[14] Garg V.K., Gupta R., Kumar R., Gupta R.K., Adsorption of chromium from aqueous solution on treated sawdust, Bioresour Technol, Vol. 92(1), 2004, 79–81.10.1016/j.biortech.2003.07.00414643989Search in Google Scholar

[15] Hanif M.A., Nadeem R., Zafar M.N., Aktar K., Bhatti H.N., Nikel (II) biosorption by Casia fistula biomass, J Hazard Mater, Vol. 139(2), 2007, 345–355.10.1016/j.jhazmat.2006.06.04016860463Search in Google Scholar

[16] Saeed A., Akhter M.W., Iqbal M. Removal and recovery of heavy metals from aqueous solution using papaya wood as a new biosorbents, Sep Purif Technol, Vol. 45(1), 2005, 25–31.10.1016/j.seppur.2005.02.004Search in Google Scholar

[17] Min S.H., Han J.S., Shin E.W., Park J.K., Improvement of cadmium ion removal by base treated juniper fiber, Water Res, Vol. 38(5), 2004, 1289–1295.10.1016/j.watres.2003.11.01614975662Search in Google Scholar

[18] Chakravarty S., Pimple S., Hema S., Chaturvedi T., Singh S., Gupta K.K., Removal of copper from aqueous solution using newspaper pulp as an adsorbent, J Hazard Mater, Vol. 159(2), 2008, 396–403.10.1016/j.jhazmat.2008.02.03018359157Search in Google Scholar

[19] Zheng L.S., Dang Z., Yi X.Y., Zhang H. Equilibrium and kinetic studies of adsorption of Cd(II) from aqueous solution using modified corn stalk, J Hazard Mater, Vol. 176(1–3), 2010, 650–656.10.1016/j.jhazmat.2009.11.08120007006Search in Google Scholar

[20] Ghodbane I., Hamdaoui O., Removal of mercury (II) from aqueous media using eucalyptus bark: kinetic and equilibrium studies, J Hazard Mater, Vol. 160(2–3), 2008, 301–309.10.1016/j.jhazmat.2008.02.11618400378Search in Google Scholar

[21] Ghodbane I., Nouri L., Hamdaoui O., Chiha M., Kinetic and equilibrium study for the sorption of cadmium (II) ions from aqueous phase by eucalyptus bark, J Hazard Mater, Vol. 152(1), 2007, 148–158.10.1016/j.jhazmat.2007.06.079Search in Google Scholar

[22] Lohani M.B., Singh A., Rupainwar D.C., Dhar D.N., Studies on efficiency of guava (Psidium guajava) bark as bioadsorbent for removal of Hg(II) from aqueous solutions, J Hazard Mater, Vol. 159(2–3), 2008, 626–629.10.1016/j.jhazmat.2008.02.072Search in Google Scholar

[23] King P., Srinivasa P., Kumar Y.P., Prasad V.S.K.R., Sorption of copper (II) ion from aqueous solution by Techtona grandis L.F. (teak leaves powder), J Hazard Mater, Vol. 136(3), 2006, 560–566.10.1016/j.jhazmat.2005.12.032Search in Google Scholar

[24] Rao K.S., Anand S., Venkateswarlu P., Adsorption of cadmium (II) ions from aqueous solution by Tectona grandis L.F. (teak leaves powder), BioResources, Vol. 5(1), 2010, 438–454.Search in Google Scholar

[25] Ngah W.S.W., Hanafiah M.A.K.M., Adsorption of copper on rubber (Hevea brasiliensis) leaf powder: kinetic, equilibrium and thermodynamic studies, Biochem Eng J, Vol. 39(3), 2008, 521–530.10.1016/j.bej.2007.11.006Search in Google Scholar

[26] Ngah W.S.W., Hanafiah M.A.K.M., Biosorption of copper ions from dilute aqueous solutions on base treated rubber (Hevea brasiliensis) leaf powder: kinetics, isoterm, and biosorption mechanisms, J Environ Sci–China, Vol. 20(10), 2008, 1168–1176.10.1016/S1001-0742(08)62205-6Search in Google Scholar

[27] Qaizer S., Saleem A.R., Ahmad M.M., Heavy metal uptake by agro based waste materials. Environ, Biotechnol, Vol. 10, 2007, 409–416.10.2225/vol10-issue3-fulltext-12Search in Google Scholar

[28] Malkoc E., Ni(II) removal from aqueous solutions using cone biomass of Thuia orientalis, J Hazard Mater, Vol. 137(2), 2006, 899–908.10.1016/j.jhazmat.2006.03.00416621254Search in Google Scholar

[29] Bulut Y., Tez Z., Adsorption studies on ground shells of hazelnut and almond, J Hazard Mater, Vol. 149(1), 2007, 35–41.10.1016/j.jhazmat.2007.03.04417467899Search in Google Scholar

[30] Malkoc E., Nuhoglu Y., Determination of kinetic and equilibrium parameters of the batch adsorption of Cr(VI) onto waste acorn Quercus ithaburensis, Chem Eng Processing, Vol. 46(10), 2007, 1020–1029.10.1016/j.cep.2007.05.007Search in Google Scholar

[31] Ofomaja A.E., Ho Y.S., Effect of pH on cadmium biosorption by coconut copra meal, J Hazard Mater, Vol. 139(2), 2007, 356–362.10.1016/j.jhazmat.2006.06.03916889890Search in Google Scholar

[32] Parab H., Joshi S., Shenoy N., Lali A., Sarma U.S., Sudersanan M., Determination of kinetic and equilibrium parameters of the batch adsorption of Co(II), Cr(III) and Ni(II) onto coir pith, Process Biochem, Vol. 41(3), 2006, 609–615.10.1016/j.procbio.2005.08.006Search in Google Scholar

[33] Saeed A., Iqbal M., Holl W.H., Kinetics, equilibrium and mechanism of Cd2+ removal from aqueous solution by mungbean husk, J Hazard Mater, Vol. 168(2-3), 2009, 1467–1475.10.1016/j.jhazmat.2009.03.06219386413Search in Google Scholar

[34] Altundogan H.S., Arslan N.E., Tumen F. Copper removal from aqueous solutions by sugar beet pulp treated by NaOH and citric acid, J Hazard Mater, Vol. 149(2), 2007, 432–439.10.1016/j.jhazmat.2007.04.00817499920Search in Google Scholar

[35] Klemm D., Philipp B., Heinze D., Heinze U., Wagenknecht W., Comprehensive Cellulose Chemistry, Vol. 1: Fundamentals and Analytical Methods, Weinheim, Wiley-WCH, Germany 1998.10.1002/3527601929Search in Google Scholar

[36] Cellulose and Cellulose Derivatives, Eds: N.M. Bikales, L. Segal, Wiley, New York 1971.Search in Google Scholar

[37] Bismark A., Aranberri-Askargorta I., Springer J., Surface Characterization of Flax, Hemp and Cellulose Fibers, Surface Properties and the Water Uptake Behavior, Polymer composites 2002, Vol. 23(5): 872–894.10.1002/pc.10485Search in Google Scholar

[38] Bos, Harriëtte L., The potential of flax fibres as reinforcement for composite materials, Technische Universiteit Eindhoven, Eindhoven 2004.Search in Google Scholar

[39] Shulga G., Betkers T., Shakels V., Neiberte B., Verovkins A., Brovkina J., Belous O., Ambrazaitene D., Žukauskaite A., Lignocellulosic mulch, polycomplex, soil, BioResources, Vol. 2(4), 2007, 572–582.Search in Google Scholar

[40] Kays S.J., Nottingham S.E., Biology and chemistry of Jerusalem artichoke, Helianthus tuberosus L., CRC Press. Taylor & Francis Group LLC, USA 2008.10.1201/9781420044966Search in Google Scholar

[41] Stevenson L., Phillips F., O’sullivan K., Walton J., Wheat bran: its composition and benefits to health, a European perspective, International Journal of Food Sciences and Nutrition, Vol. 63(8), 2012, 1001–1013.10.3109/09637486.2012.687366350730122716911Search in Google Scholar

[42] Karr-Lilienthal L.K., Grieshop C.M., Merchen N.R., Mahan D.C., Fahey G.C. Jr., Chemical composition and protein quality comparisons of soybeans and soybean meals from five leading soybean-producing countries, J Agric Food Chem, Vol. 52(20), 2004, 6193–6199.10.1021/jf049795+15453686Search in Google Scholar

[43] Sjőstrőm E., Alѐn R., Analytical methods in wood chemistry, pulping and processing, Springer – Verlag Berlin Heidelberg, 1999.Search in Google Scholar

[44] Nikiforova T.E., Kozlov V.A., A mechanism of extraction of heavy metal ions from aqueous solutions by chemically modified cellulose, Prot Met Phys Chem Surf, Vol. 48(6), 2012, 527–534.10.1134/S207020511206007XSearch in Google Scholar

[45] Kocherbitov V., Ulvenlund S., Kober M., Jarring K., Arnebrant T., Hydration of microcrystalline cellulose and milled cellulose studied by sorption calorimetry, J Phys Chem B, Vol. 112(12), 2008, 3728–3734.10.1021/jp711554c18307340Search in Google Scholar

[46] Krässig H.A., Cellulose: structure, accessibility and reactivity Polymer monographs, V. 11. 1993, Gordon and Breach Science Publishers.Search in Google Scholar

[47] NikiforovaT.E., Kozlov V.A., Various factors affecting heavy metal ion sorption from aqueous media by sorbent containing cellulose, Prot Met Phys Chem Surf, Vol. 47(1), 2011, 20–24.10.1134/S2070205110051016Search in Google Scholar

[48] Nikonorov V.V., Ivanov R.V., Kil’deeva N.R., Lozinskii V.I., Effect of polymer precursor molecular mass on the formation and properties of covalently cross-linked chitosan cryogels, Polymer Science Ser A, Vol. 53(12), 2011, 1150–1158.10.1134/S0965545X1112011XSearch in Google Scholar

[49] Albert A., Sergeant E., Ionization Constants of Acids and Bases, Wiley, New York 1962, 179 р.Search in Google Scholar

[50] Stavitskaya S.S., Mironyuk T.I., Kartel’ N.T., Strelko V.V., Sorption characteristics of “food fibers” in secondary products of processing of vegetable raw materials, Russian J Appl Chem,, Vol. 74(4), 2001, 592–595.10.1023/A:1012706531317Search in Google Scholar

[51] Mann J., Modern methods of determining crystallinity in cellulose, Pure Appl Chem, 5(1–2), 1962, 91–106.10.1351/pac196205010091Search in Google Scholar

[52] Febrianto J., Kosasih A.N., Sunarso J., Ju Y.-H., Indraswati N., Ismadji S., Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies, J Hazard Mater, Vol. 162, 2009, 616–645.10.1016/j.jhazmat.2008.06.04218656309Search in Google Scholar