Acceso abierto

The Role of Classical Image Processing Algorithms in the Age of AI Revolution

  
23 dic 2024

Cite
Descargar portada

Akinpelu A., Bhullar M., Yao Y. (2024). Discovery of novel materials through machine learning. Journal of Physics Condensed Matter 36(45), art. 453001. https://doi.org/10.1088/1361-648X/ad6bdbSearch in Google Scholar

Almukhalfi, H., Noor, A., Noor, T.H. (2024). Traffic management approaches using machine learning and deep learning techniques: A survey. Engineering Applications of Artificial Intelligence 133, Part B, https://doi.org/10.1016/j.engappai.2024.108147.Search in Google Scholar

Brian L. DeCost, Elizabeth A. Holm, A. (2015). Computer vision approach for automated analysis and classification of microstructural image data. Comput. Mater. Sci. 110, 126–133. https://doi.org/10.1016/j.commatsci.2015.08.011Search in Google Scholar

Choudhary, K., DeCost, B., Chen, C., Jain A., Tavazza, F., Cohn, R., Park, C.W., Choudhary, A., Agrawal, A., Billinge, S.J.L., Holm, E., Ong, S.P., Wolverton, C. (2022). Recent advances and applications of deep learning methods in materials science. npj Computational Materials 8(1), art. 59. https://doi.org/10.48550/arXiv.2110.14820Search in Google Scholar

Cruz-Orive, L.M., (2024). Stereology. Theory and Application, Springer, Interdisciplinary Applied Mathematics.Search in Google Scholar

Diwakar V., Sharma A., Yusufzai, M.Z.K., Vashista, M. (2024). Machine learning--based prediction of single clad characteristics and non-destructive characterization of multi-layer deposited FeCoNiCrMo HEA on EN24 via laser cladding. Materials Today Communications 41, art. 110839. https://doi.org/10.1016/j.mtcomm.2024.110839Search in Google Scholar

Ghilom, M., Latifi, S. (2024). The Role of Machine Learning in Advanced Biometric Systems. Electronics 13(13), art. 2667. https://doi.org/10.3390/electronics13132667Search in Google Scholar

Gururaj, H.L., Soundarya, B.C., Priya, S., Shreyas, J., Flammini, F. (Accepted/In press). A Comprehensive Review of Face Recognition Techniques, Trends and Challenges. IEEE Access 12, art. 1. https://doi.org/10.1109/ACCESS.2024.3424933Search in Google Scholar

Hendrix, W., Hendrix, N., Scholten, E.T. et al. (2023). Deep learning for the detection of benign and malignant pulmonary nodules in non-screening chest CT scans. Commun Med 3, 156. https://doi.org/10.1038/s43856-023-00388-5Search in Google Scholar

Islam, M.D, Rashid, S.I, Hossain, N.U.I, Fleming, R., Sokolov A., (2023). An integrated convolutional neural network and sorting algorithm for image classification for efficient flood disaster management. Decision Analytics Journal 7, art. 100225. https://doi.org/10.1016/j.dajour.2023.100225Search in Google Scholar

Jain, S., Singh, A., Shah, S.N., Lalam, R., Saxena, D. (2021). Machine Learning-Based Real-Time Traffic Control System, 2021 IEEE Mysore Sub Section International Conference (MysuruCon), Hassan, India, 92–97. https://doi.org/10.1109/MysuruCon52639.2021.9641643.Search in Google Scholar

Jaspin, K., Yogasundar, K., Shree Vishnu, S. (2024). Satellite Images Classification by Using Artificial Intelligence Techniques, 2024 International Conference on Innovations and Challenges in Emerging Technologies (ICICET), Nagpur, India, 1–6. https://doi.org/10.1109/ICICET59348.2024.10616283.Search in Google Scholar

DeMille, K.J., Hall, R., Leigh, J.R., Guven, I., Spear, A.D. (2024). Materials design using genetic algorithms informed by convolutional neural networks: Application to carbon nanotube bundles. Composites Part B: Engineering 286, art. 111751. https://doi.org/10.1016/j.compositesb.2024.111751Search in Google Scholar

Koh, D.-M., Papanikolaou, N., Bick, U., Illing, R., Kahn, C.E. Jr., Kalpathi-Cramer, J., Matos, C., Martí-Bonmatí, L., Miles, A., Mun, S.K., Napel, S., Rockall, A., Sala, E., Strickland, N., Prior, F. (2022). Artificial intelligence and machine learning in cancer imaging. Commun Med. 2, 133. https://doi.org/10.1038/s43856-022-00199-0Search in Google Scholar

Morgan, D., Jacobs, R. (2020). Opportunities and Challenges for Machine Learning in Materials Science. Annual Review of Materials Research 50, 71–103. https://doi.org/10.1146/annurev-matsci-070218-010015Search in Google Scholar

Müller, M., Britz, D., Staudt, T., Mücklich, F. (2021). Microstructural Classification of Bainitic Subclasses in Low-Carbon Multi-Phase Steels Using Machine Learning Techniques. Metals 11(11), art. 1836. https://doi.org/10.3390/met11111836Search in Google Scholar

Nakrani, M.G., Sable, G.S., Shinde, U.B. (2020). ResNet based Lung Nodules Detection from Computed Tomography Images. International Journal of Innovative Technology and Exploring Engineering 9(4), 1711–1714. https://doi.org/10.35940/ijitee.D1540.029420Search in Google Scholar

Pal, O.K., Roy, S., Modok, A.K., Teethi, T.I., Sarker, S.K. (2024). ULung: A Novel Approach for Lung Image Segmentation. 6th International Conference on Computing and Informatics (ICCI), New Cairo–Cairo, Egypt, 2024, 522–527. https://doi.org/10.1109/ICCI61671.2024.10485043Search in Google Scholar

Sowmya, D., Deepa, P., Venugopal, K. (2017). Remote sensing satellite image processing techniques for image classification: a comprehensive survey. Int. J. Comput. Appl. 161(11), 24–37. https://doi.org/10.5120/ijca2017913306Search in Google Scholar

Tehrani, A.M., Oliynyk, A.O., Parry, M., Rizvi, Z., Couper S., Lin F., Miyagi L., Sparks T.D., Brgoch J. (2018). Machine learning directed search for ultraincompressible, superhard materials. J. Am. Chem. Soc. 140, 9844–9853. https://doi.org/10.1021/jacs.8b02717Search in Google Scholar

Tian, J., Zhao, Y., Huang, Y., Li,Y., Zhang, Ch., Peng, S., Han, G., Liu,Y., (2024). Theoretical Prediction of Vickers Hardness for Oxide Glasses: Machine Learning Model, Interpretability Analysis, and Experimental Validation. Materialia 33, art. 102006. https://doi.org/10.1016/j.mtla.2024.102006Search in Google Scholar

Toorandaz, S., Taherkhani, K., Liravi, F., Toyserkani, E. (2024). A novel machine learning-based approach for in-situ surface roughness prediction in laser powder-bed fusion. Additive Manufacturing 91, art. 104354. https://doi.org/10.1016/j.addma.2024.104354Search in Google Scholar

Tran, K., Neiswanger, W., Yoon, J., Zhang, Q., Xing, E., Ulissi, Z.W. (2020). Methods for comparing uncertainty quantifications for material property predictions. Machine Learning: Science and Technology 1(2), art. 025006. https://doi.org/10.48550/arXiv.1912.10066Search in Google Scholar

Wang, Z.-L., Adachi, Y. (2019). Property prediction and properties-tomicrostructure inverse analysis of steels by a machine-learning approach. Materials Science and Engineering A, 744, 661–670. https://doi.org/10.1016/j.msea.2018.12.049Search in Google Scholar

Wang Z., Chang S., Bao X., Yu H., Guan S., Zhu K., Zheng Y., Li J., Gao X. (2024). Interpretable prediction of remanence in sintered NdFeB through machine learning strategy. Journal of Alloys and Compounds 1008, art. 176727. https://doi.org/10.1016/j.jallcom.2024.176727Search in Google Scholar

Villars, P., Cenzua, l.K. (2018). Pearson’s crystal data: crystal structure database for inorganic compounds. ASM International, Materials Park, 2010.Search in Google Scholar

Xie, T., Grossman, J.C. (2018). Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties. Physical Review Letters 120(14), art. 145301. https://doi.org/10.1103/PhysRevLett.120.145301Search in Google Scholar

Zhang, J., Marszałek, M., Lazebnik, S., Schmid, C. (2007). Local features and kernels for classification of texture and object categories: A comprehensive study. International Journal of Computer Vision 73(2), 213–238. https://doi.org/10.1007/s11263-006-9794-4Search in Google Scholar

Zhao, Z. (2024). Predicting compressive strength of ultra-high-performance concrete using Naive Bayes regression in novel approaches. Multiscale and Multidisciplinary Modeling, Experiments and Design 7(6), 5235–5249. https://doi.org/10.1007/s41939-024-00511-6.Search in Google Scholar

Zhao, P., Wang, Y., Jiang, B., Wei, M., Zhang, H., Cheng, X., (2023). A new method for classifying and segmenting material microstructure based on machine learning. Materials & Design 227, art. 111775. https://doi.org/10.1016/j.matdes.2023.111775Search in Google Scholar

Zhu, B., Chen, Z., Hu, F. et al. (2022). Feature Extraction and Microstructural Classification of Hot Stamping Ultra-High Strength Steel by Machine Learning. JOM 74, 3466–3477. https://doi.org/10.1007/s11837-022-05265-5Search in Google Scholar

Zimmermann, M.G., Lengler, J., Glushych, V., Schopphoven, T., Meiners, W., Häfner, C.L., Holly, C. (2024). AI-based spatially resolved parameter prediction in laser metal deposition for increased process stability. Journal of Laser Applications 36(4), art. 042075. https://doi.org/10.2351/7.0001604Search in Google Scholar