Acceso abierto

Crack propagation analysis in selected railway bogie components

   | 15 jun 2020

Cite

Cera, A., Mancini, G., Leonardi V., Bertini L. (2008). Analysis of Methodologies for Fatigue Calculation for Railway Bogie Frames. 8th World Congress on Railway Research R.1.1.3.2, Seoul.Search in Google Scholar

EN 13749:2011. Railway applications. Wheelsets and bogies. Methods of specifying structural requirements of bogie frames.Search in Google Scholar

Frank, K.H. (1971). The fatigue strength of fillet welded connections. Lehigh: Lehigh University.Search in Google Scholar

Fries, T.P., Baydoun, M. (2012). Crack propagation with the extended finite element method and a hybrid explicit-implicit crack description. International Journal for Numerical Methods in Engineering, 89(12), 1527–1558. doi: http://dx.doi.org/10.1002/nme.329910.1002/nme.3299Search in Google Scholar

German, J. (2011). Wprowadzenie do mechaniki pękania. Kraków: Politechnika Krakowska.Search in Google Scholar

Gigliotti, L. (2012). Assessment of the applicability of XFEM in Abaqus for modelling crack growth in rubber. Master Thesis, Sweden: Royal Institute of Technology.Search in Google Scholar

Leven, M.R., Daniel, R. (2012). Stationary 3D crack analysis with Abaqus XFEM for integrity assessment of subsea equipment. Master Thesis, Sweden: Chalmers University of Technology.Search in Google Scholar

Luo, R.K., Gabbitas, B.L., Brickle, B.V. (1994). Fatigue Life Evaluation of a Railway Vehicle Bogie Using an Integrated Dynamic Simulation. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 208(2), 123–132. https://doi.org/10.1243/PIME_PROC_1994_208_242_0210.1243/PIME_PROC_1994_208_242_02Search in Google Scholar

Podrug, S., Glodež, S., Jelaska, D. (2011). Numerical Modelling of Crack Growth in a Gear Tooth Root. Strojniški vestnik - Journal of Mechanical Engineering, 57(7–8), 579–586. http://dx.doi.org/10.5545/sv-jme.2009.12710.5545/sv-jme.2009.127Search in Google Scholar

Sampos, A.G. (1996). Fracture of fillet welds under extreme loading. Massachusetts: Massachusetts Institute of Technology.Search in Google Scholar

Sanecki, H. (2010). Propagacja szczeliny. In H. Sanecki (Eds.), Problemy kontaktu i pękania w analizie wytrzymałościowej elementów maszyn (pp. 128–146). Kraków: Politechnika Krakowska.Search in Google Scholar

Seo, J.W., Hur, H.M., Jun, H.K., Kwon, S.J., Lee, D.H. (2017). Fatigue Design Evaluation of Railway Bogie with Full-Scale Fatigue Test, Advances in Materials Science and Engineering, 2017, 1–11. https://doi.org/10.1155/2017/5656497.10.1155/2017/5656497Search in Google Scholar

VDI 2230 norm. (2015). Systematic calculation of highly stressed bolted joints with one cylindrical bolt, Annex A. Calculation tables.Search in Google Scholar

Vu-Bac, N., et al. (2011). A Node-Based Smoothed eXtended Finite Element Method (NS-XFEM) for Fracture Analysis. CMES-Computer Modeling in Engineering & Sciences, 73(4), 331–356. https://doi.org/10.3970/cmes.2011.073.331Search in Google Scholar

Wang, J., Ren, L., Xie, L.Z., Xie, H.P., Ai, T. (2016). Maximum mean principal stress criterion for three-dimensional brittle fracture. International Journal of Solids and Structures, 102–103, 142–154. https://doi.org/10.1016/j.ijsolstr.2016.10.00910.1016/j.ijsolstr.2016.10.009Search in Google Scholar

Yamamoto, M. (2013). Research and Development of Fatigue Issues for Railway Steel Products and Future Prospects. Nippon steel and sumitomo metal technical report, 105, 24–40.Search in Google Scholar

Y Lu, Y.H., Xiang, P.L., Dong, P. et al. (2018). Analysis of the effects of vibration modes on fatigue damage in high-speed train bogie frames. Engineering Failure Analysis, 89, 222–241.10.1016/j.engfailanal.2018.02.025Search in Google Scholar

Zuo, F., Li, Y., Huang, H. (2018). Reliability analysis for fatigue damage of railway welded bogies using Bayesian update based inspection. Smart Structures and Systems, 22(2), 193–200. https://doi.org/10.12989/sss.2018.22.2.193Search in Google Scholar