Acceso abierto

Optimal parameters for the efficient microwave ablation of liver tumor from the 3D-IRCADb-01 database

,  y   
22 abr 2024

Cite
Descargar portada

Ananthakrishnan A., Gogineni V., Saeian K., Epidemiology of Primary and Secondary Liver Cancers, Semin. Intervent. Radiol., 2006, 23 (1), 47–63. Search in Google Scholar

Balogh J., Victor D., Asham E.H., Burroughs S.G., Boktour M., Saharia A., Li X., Ghobrial R.M., Monsour H.P. Jr., Hepatocellular carcinoma: A review, J. Hepatocell. Car-cinoma, 2016, 3, 41–53. Search in Google Scholar

Villanueva A., Hepatocellular Carcinoma, N. Engl. J. Med., 2019, 380, 1450–1462. Search in Google Scholar

Linn Y.L., Chee M.Y., Koh Y.X., Teo J.Y., Cheow P.C., C how P.K.H., Chan C.Y., Chung A.Y.F., Ooi L.L.P.J., G oh B.K.P., Actual 10-year survivors and 10-year recurrence free survivors after primary liver resection for hepatocellular carcinoma in the 21st century: a single institution contempo-rary experience, J. Surg. Oncol., 2021, 123 (1), 214–221. Search in Google Scholar

Chen J.G., Zhu J., Zhang Y.H., Chen Y.S., Ding L.L., C hen H.Z., Shen A.G., Wang G.R., Liver Cancer Survival: A Real World Observation of 45 Years with 32,556 Cases, Journal of Hepatocellular Carcinoma, 2021, 8, 1023–1034. Search in Google Scholar

Li Y., Zhang R., Xu Z., Wang Z., Advances in Nanolipo-somes for the Diagnosis and Treatment of Liver Cancer, Int. J. Nanomedicine, 2022, 17, 909–925. Search in Google Scholar

Koulouris A., Tsagkaris C., Spyrou V., Pappa E., Troullinou A., Nikolaou M., Hepatocellular Carcinoma: An Overview of the Changing Landscape of Treatment Options, J. Hepatocell. Carcinom, 2021, 8, 387–401. Search in Google Scholar

Xu X.L., Liu X.D., Liang M., Luo B.M., Radiofrequency ablation versus hepatic resection for small hepatocellular carcinoma: systematic review of randomized controlled trials with meta-analysis and trial sequential analysis, Radiology, 2018, 287 (2), 461–472. Search in Google Scholar

Glassberg M.B., Ghosh S., Clymer J.W., Wright G.W.J., Ferko N., Amaral J.F., Microwave ablation compared with hepatic resection for the treatment of hepatocellular carcinoma and liver metastases: A systematic review and meta-analysis, World J. Surg. Oncol., 2019, 17 (1), 98. Search in Google Scholar

Reig M., Forner A., Rimola J., Ferrer-Fàbrega J., Burrel M., Garcia-Criado Á., Kelley R.K., Galle P.R., Mazzaferro V., Salem R., Sangro B., Singal A.G., Vogel A., Fuster J., Ayuso C., Bruix J., BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update, J. Hepatol., 2022, 76 (3), 681–683. Search in Google Scholar

Xu H., Zhang Q., Tan Y.L., Zhang Y., Wei J.Z., Wang L.L., Xie B., Efficacy of microwave ablation and entecavir as a com-bination treatment for primary liver cancer and their effects on hepatitis B virus and liver function, All Life, 2020, 13 (1), 524–531. Search in Google Scholar

Humphrey S., Newcomer J.B., Raissi D., Gabriel G., Percutaneous microwave ablation for early-stage intrahepatic cholangiocarcinoma: A single-institutional cohort, J. Clin. Im-aging Sci., 2024, 13, 4. Search in Google Scholar

Curto S., Taj-Eldin M., Fairchild D., Prakash P., Microwave ablation at 915 MHz vs 2.45 GHz: A theoretical and ex-perimental investigation, Med. Phys., 2015, 42 (11), 6152–6161. Search in Google Scholar

Karampatzakis A., Kühn S., Tsanidis G., Neufeld E., Samaras T., Kuster N., Antenna design and tissue parameters considerations for an improved modelling of microwave ablation in the liver, Phys. Med. Biol., 2013, 58 (10), 3191–3206. Search in Google Scholar

Prakash P., Converse M.C., Webster J.G., Mahvi D.M., An optimal sliding choke antenna for hepatic microwave abla-tion, IEEE Trans. Bio-Med. Eng., 2009, 56 (10), 2470–2476. Search in Google Scholar

Yang D., Bertram J.M., Converse M.C., O’Rourke A.P., Webster J.G., Hagness S.C., Will J.A., Mahvi D.M., A float-ing sleeve antenna yields localized hepatic microwave ablation, IEEE Trans. Bio-Med. Eng., 2006, 53 (5), 533–537. Search in Google Scholar

Sun Y.Y., Cheng Z.G., Dong L., Zhang G.M., Wang Y., Liang P., Comparison of temperature curve and ablation zone between 915-and 2450 MHz cooled-shaft microwave antenna: Results in ex vivo porcine livers, Eur. J. Radiol., 2012, 81 (3), 553–557. Search in Google Scholar

Ge M., Jiang H., Huang X., Zhou Y., Zhi D., Zhao G., Chen Y., Wang L., Qiu B., A multi-slot coaxial microwave antenna for liver tumor ablation, Phys. Med. Biol., 2018, 63 (17), 175011. Search in Google Scholar

Wang Q., Yan H., Guo M., Meng L., Long Z., Long Y., Yang H., Three-dimensional finite element analysis of a novel interzygapophyseal fusion device for lower cervical spine, Acta Bioeng. Biomech., 2022, 24 (2), 187–193. Search in Google Scholar

Liu P., Wan J., Liu W., Zhao Y., Yan S., Jiang W., Liu H., Numerical analysis of the effects of canal wall-up and canal wall-down mastoidectomy on the sound transmission characteristics of human ears, Acta of Bioengineering and Biomechanics, 2023, 25 (2), 132–145. Search in Google Scholar

Su P., Yang Y., Zhang L., Huang L., Biomechanical simulation of needle insertion into cornea based on distortion energy failure criterion, Acta Bioeng. Biomech., 2016, 18 (1), 65–75. Search in Google Scholar

Servin F., Collins J.A., Heiselman J.S., Frederick-Dyer K.C., Planz V.B., Geevarghese S.K., Brown D.B., Jarnagin W.R., Miga M.I., Simulation of Image-Guided Microwave Ablation Therapy Using a Digital Twin Computational Model, IEEE Open Journal of Engineering in Medicine and Biology, 2024, 5, 107–124. Search in Google Scholar

Gorman J., Tan W., Abraham J., Numerical Simulation of Microwave Ablation in the Human Liver, Processes, 2022, 10 (2), 361. Search in Google Scholar

Qin Z., Balasubramanian S.K., Wolkers W.F., Pearce J.A., Bischof J.C., Correlated parameter fit of arrhenius model for thermal denaturation of proteins and cells, Ann. Biomed. Eng., 2014, 42 (12), 2392–2404. Search in Google Scholar

Sheu T.W., Chou C.W., Tsai S.F., Liang P.C., Three-dimensional analysis for radio-frequency ablation of liver tumor with blood perfusion effect, Computer Methods in Biomechanics and Biomedical Engineering, 2005, 8 (4), 229–240. Search in Google Scholar

Ortega-Palacios R., Trujillo-Romero C.J., Cepeda-Rubio M.F.J., Leija L., Vera Hernández A., Heat Transfer Study in Breast Tumor Phantom during Microwave Ablation: Modeling and Experimental Results for Three Different Antennas, Electronics, 2020, 9 (3), 535. Search in Google Scholar

Selmi M., Bin Dukhyil A.A., Belmabrouk H., Numerical Analysis of Human Cancer Therapy Using Microwave Ablation, Appl. Sci., 2020, 10 (1), 211. Search in Google Scholar

Tehrani M.H.H., Soltani M., Kashkooli F.M., Raahemifar K., Use of microwave ablation for thermal treatment of solid tumors with different shapes and sizes – A computational approach, PLoS ONE, 2020, 15 (6), e0233219. Search in Google Scholar

Radmilović-Radjenović M., Bošković N., Sabo M., Radjenović B., An Analysis of Microwave Ablation Parameters for Treatment of Liver Tumors from the 3D-IRCADb-01 Data-base, Biomedicines, 2022, 10 (7), 1569. Search in Google Scholar

3D-IRCADb database, https://www.ircad.fr/research/3dircadb/ [Accessed: 25 January 2024]. Search in Google Scholar

Bošković N., Radmilović-Radjenović M., Radjenović B., Finite Element Analysis of Microwave Tumor Ablation Based on Open-Source Software Components, Mathematics, 2023, 11 (12), 2654. Search in Google Scholar

Radmilović-Radjenović M., Radjenović D., Radjenović B., Finite element analysis of the effect of microwave ablation on the liver, lung, kidney, and bone malignant tissues, Europhys. Lett., 2021, 136, 1363500. Search in Google Scholar

Miaskowski A., Gas P., Numerical Estimation of SAR and Temperature Distributions inside Differently Shaped Female Breast Tumors during Radio-Frequency Ablation, Materials, 2023, 16 (1), 223. Search in Google Scholar

Mercado Montoya M., Gomez Bustamante T., Berjano E., Mickelsen S.R., Daniels J.D., Hernandez Arango P., Schieber J., Kulstad E., Proactive esophageal cooling protects against thermal insults during high-power short-duration radiofrequency cardiac ablation, International Journal of Hyperthermia, 2022, 39 (1), 1202–1212. Search in Google Scholar