Acceso abierto

Influence of bioactive metal fillers on antimicrobial properties of PA12 composites produced by laser-based powder bed fusion of polymers

, , , , ,  y   
31 dic 2023

Cite
Descargar portada

Alshrefy A.J., Alwohaibi R.N., Alhazzaa S.A., Almaimoni R.A., AlMusailet L.I., AlQahtani S.Y., Alshahrani M.S., Incidence of Bacterial and Fungal Secondary Infections in COVID-19 Patients Admitted to the ICU, Int. J. Gen. Med., 2022, 15, 7475–7485, https://doi.org/10.2147/IJGM.S382687, PMID: 36187162, PMCID: PMC9518678. Search in Google Scholar

Arnal N., Tacconi de Alaniz M.J., Marra C.A., Cytotoxic effects of copper overload on human-derived lung and liver cells in culture, Biochimica et Biophysica Acta, 2012, 1820, 931–939, https://doi.org/10.1016/j.bbagen.2012.03.007 Search in Google Scholar

Balzereit S., Proes S., Altstädt S., Emmelmann C., Properties of copper modified polyamide 12-powders and their potential for the use as laser direct structurable electronic circuit carriers, Addit. Manuf., 2018, 23, 347–354, https://doi.org/10.1016/j.addma.2018.08.016 Search in Google Scholar

Castaño N., Cordts S.C., Kurosu Jalil M., Zhang K.S., Koppaka S., Bick A.D., Paul R., Tang Sky., Fomite Transmission, Physicochemical Origin of Virus-Surface Interactions, and Disinfection Strategies for Enveloped Viruses with Applications to SARS-CoV-2, ACS Omega, 2021, 6 (10), 6509–6527, DOI: 10.1021/acsomega.0c06335, PMID: 33748563, PMCID: PMC7944398. Search in Google Scholar

Coffey B.M., Anderson G.G., Biofilm Formation in the 96-Well Microtiter Plate, Methods in Molecular Biology, 2014, 1149, 631–641, https://doi.org/10.1007/978-1-4939-0473-0_48 Search in Google Scholar

Equbal A., Akhter S., Sood A.K., Equbal I., The usefulness of additive manufacturing (AM) in COVID-19, Annals of 3D Printed Medicine, 2021, 2, https://doi.org/10.1016/j.stlm.2021.100013 Search in Google Scholar

Falces-Romero I., Bloise I., García-Rodríguez J., Cendejas-Bueno E., SARS-CoV-2 Working Group. Staphylococcus aureus bacteremia in patients with SARS-CoV-2 infection, Med. Clin. (Engl Ed), 2023, 160 (11), 495–498, DOI: 10.1016/j.medcle.2023.05.007. PMID: 37311167; PMCID: PMC10250598. Search in Google Scholar

Frei A., Verderosa A.D., Elliott A.G. et al., Metals to combat antimicrobial resistance, Nat. Rev. Chem., 2023, 7, 202–224, https://doi.org/10.1038/s41570-023-00463-4 Search in Google Scholar

Grela E., KozŁowska J., Grabowiecka A., Current methodology of MTT assay in bacteria – A review, Acta Histochem., 2018, 120, 303–311, https://doi.org/10.1016/J.ACTHIS.2018.03.007 Search in Google Scholar

Gruber P., Hoppe V., Grochowska E., Paleczny J., Junka A., Smolina I. et al., Material extrusion-based additive manufacturing of poly(Lactic acid) antibacterial filaments – a case study of antimicrobial properties, Polymers (Basel), 2021, 13, https://doi.org/10.3390/polym13244337 Search in Google Scholar

Gruber P., ZŁkowski G., Olejarczyk M., Grochowska E., Hoppe V., Szymczyk-ZŁkowska P. et al., Influence of bioactive metal fillers on microstructural homogeneity of PA12 composites produced by polymer Laser Sintering, Archives of Civil and Mechanical Engineering, 2022, 22, 117, https://doi.org/10.1007/s43452-022-00442-4 Search in Google Scholar

Karoluk M., Koenig G., Kurzynowski T., Method of medical equipment evaluation and preparation for on-demand additive manufacturing with the conventional supply chain being broken: A case study of mask filter adapter production during COVID-19, Applied Sciences (Switzerland), 2021, 11, https://doi.org/10.3390/app112412016 Search in Google Scholar

Kim I.Y., Seo S.J., Moon H.S., Yoo M.K., Park I.Y., Kim B.C. et al., Chitosan and its derivatives for tissue engineering applications, Biotechnol. Adv., 2008, 26, 1–21, https://doi.org/10.1016/j.biotechadv.2007.07.009 Search in Google Scholar

Kramer A., Dissemond J., Kim S., Willy C., Mayer D., Papke R., Tuchmann F., Assadian O., Consensus on Wound Antisepsis: Update 2018, Skin Pharmacol. Physiol., 2018, 31 (1), 28–58, DOI: 10.1159/000481545. Epub. 2017, Dec. 21. Search in Google Scholar

Kubin C.J., McConville T.H., Dietz D., Zucker J., May M., Nelson B. et al., Characterization of Bacterial and Fungal Infections in Hospitalized Patients with Coronavirus Disease 2019 and Factors Associated with Health Care-Associated Infections, Open Forum Infect. Dis., 2021, 8, https://doi.org/10.1093/ofid/ofab201 Search in Google Scholar

Lanzl L., Wudy K., Greiner S., Drummer D., Selective laser sintering of copper filled polyamide 12: Characterization of powder properties and process behavior, Polym. Compos., 2019, 40, 1801–1809, https://doi.org/10.1002/pc.24940 Search in Google Scholar

Lee W.H., Kim D.S., Ahn Y.J., Choi B.O., Choi K.H., Development of Industrial SFF System Using a New Selective Dual-Laser Sintering Process, Key Eng. Mater., 2006, 326–328, 123–126, https://doi.org/10.4028/www.scientific.net/kem.326-328.123 Search in Google Scholar

Liao C., Li Y., Tjong S.C., Bactericidal and Cytotoxic Properties of Silver Nanoparticles, Int. J. Mol. Sci., 2019, 21, https://doi.org/10.3390/ijms20020449 Search in Google Scholar

Logithkumar R., Keshavnarayan A., Dhivya S., Chawla A., Saravanan S., Selvamurugan N., A review of chitosan and its derivatives in bone tissue engineering, Carbohydr. Polym., 2016, 151, 172–188, https://doi.org/10.1016/j.carbpol.2016.05.049 Search in Google Scholar

Lu D.E., Hung S.H., Su Y.S., Lee W. Sen., Analysis of Fungal and Bacterial Co-Infections in Mortality Cases among Hospitalized Patients with COVID-19 in Taipei, Taiwan. Journal of Fungi, 2022, 8, https://doi.org/10.3390/jof8010091 Search in Google Scholar

Mouriño V., Boccaccini A.R., Bone tissue engineering therapeutics: Controlled drug delivery in three-dimensional scaffolds, J. R. Soc. Interface, 2010, 7, 209–227, https://doi.org/10.1098/rsif.2009.0379 Search in Google Scholar

Muñoz-Bonilla A., Fernández-García M., Polymeric materials with antimicrobial activity, Progress in Polymer Science (Oxford), 2012, 37, 281–339, https://doi.org/10.1016/j.progpolymsci.2011.08.005 Search in Google Scholar

Na I., Kennedy D.C., Size-Specific Copper Nanoparticle Cytotoxicity Varies between Human Cell Lines, Int. J. Mol. Sci., 2021, 22, https://doi.org/10.3390/ijms22041548 Search in Google Scholar

Olmos D., González_Benito J., Polymeric materials with antibacterial activity: A review, Polymers (Basel), 2021, 13, 1–30, https://doi.org/10.3390/polym13040613 Search in Google Scholar

Özbay B., Bekem A., Serhatli I.E., Öztürk S., Bulduk M.E., Effects of copper fillers on mechanical and electrical properties of selective laser sintered PA 12-Cu composites, Materials Technology, 2021, 37, 10, 1541–1553, DOI: 10.1080/10667857.2021.1964203. Search in Google Scholar

Özbay B., K E., Kisasöz A., Karabeyoğlu S., Dry sliding wear behavior of energy density dependent PA 12/Cu composites produced by selective laser sintering, Materials Testing, 2023, 65 (2), 303–312, https://doi.org/10.1515/mt-2022-0260 Search in Google Scholar

Psochia E., Papadopoulos L., Gkiliopoulos D.J., Francone A., Grigora M.-E., Tzetzis D. et al., Bottom-Up Development of Nanoimprinted PLLA Composite Films with Enhanced Antibacterial Properties for Smart Packaging Applications, Macromol. 2021, 1, 49–63, https://doi.org/10.3390/macromol1010005 Search in Google Scholar

Repetto G., del Peso A., Zurita J., Neutral red uptake assay for the estimation of cell viability/cytotoxicity, Nat. Protoc., 2008, 3, 1125–1131, https://doi.org/10.1038/nprot.2008.75 Search in Google Scholar

Rzeszuto J., Kaczor P., Kosztulska B., Handzlik I., SuwaŁa S., Junik R., Is additive manufacturing a magic bullet to resupply lacking PPE? Producing respirators and face shields during COVID-19 pandemic: A systematic review [published online as ahead of print on December 15, 2021]. Polim. Med., 2021, DOI: 10.17219/pim/144329. Search in Google Scholar

Qiu H., Si Z., Luo Y., Feng P., Wu X., Hou W. et al., The Mechanisms and the Applications of Antibacterial Polymers in Surface Modification on Medical Devices, Front. Bioeng. Biotechnol., 2020, 8, https://doi.org/10.3389/fbioe.2020.00910 Search in Google Scholar

Salah I., Parkin I.P., Allan E., Copper as an antimicrobial agent: recent advances, RSC Advances, 2021, 11, 18179–18186, http://dx.doi.org/10.1039/D1RA02149D Search in Google Scholar

Segrelles-Calvo G., de S Araújo G.R., Llopis-Pastor E., Carrillo J., Hernández-Hernández M., Rey L. et al., Candida spp. co-infection in COVID-19 patients with severe pneumonia: Prevalence study and associated risk factors, Respir. Med., 2021, 188, https://doi.org/10.1016/j.rmed.2021.106619 Search in Google Scholar

Shafiekhani M., Shekari Z., Boorboor A., Zare Z., Arabsheybani S., Azadeh N., Bacterial and fungal coinfections with SARS-CoV-2 in solid organ recipients: a retrospective study, Virol J., 2022, 19, https://doi.org/10.1186/s12985-022-01763-9 Search in Google Scholar

Shumbula N.P., Ndala Z.B., Nkabinde S.S., Nchoe O., Macumele K., Mpelane S., Shumbula M.P., Mdluli P.S., Sibuyi N.R.S., Njengele-Tetyana Z., Tetyana P., Mlambo M., Moloto N., Antimicrobial activity and cytotoxicity of copper/polydopamine nanocomposites, Results in Chemistry, 2022, 4, 100635, https://doi.org/10.1016/j.rechem.2022.100635 Search in Google Scholar

Turner R.D., Wingham J.R., Paterson T.E., Shepherd J., Majewski C., Use of silver-based additives for the development of antibacterial functionality in Laser Sintered polyamide 12 parts, Sci. Rep., 2020, 10, 1–11, https://doi.org/10.1038/s41598-020-57686-4 Search in Google Scholar

Venkatesan J., Kim S.K., Chitosan composites for bone tissue engineering – An overview, Mar. Drugs, 2010, 8, 2252–2266, https://doi.org/10.3390/md8082252 Search in Google Scholar

Vilardell A.M., Yadroitsava I., Wolf W.K.C., Du Plessis A., Tshibalanganda M., Kouprianoff D.P. et al., Laser powder bed fusion of polyamide-composite for antibacterial applications: Characterization and properties, Mater. Today Commun., 2022, 31, https://doi.org/10.1016/j.mtcomm.2022.103727 Search in Google Scholar

Wohlers T., Wohlers Report 2021, 3D Printing and Additive Manufacturing Global State of the Industry, 2021. Search in Google Scholar

Xiu Z.M., Ma J., Alvarez P.J.J., Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions, Environ. Sci. Technol., 2011, 45, 9003–9008, https://doi.org/10.1021/es201918f Search in Google Scholar

Xiu Z.M., Zhang Q.B., Puppala H.L., Colvin V.L., Alvarez P.J.J., Negligible particle-specific antibacterial activity of silver nanoparticles, Nano Lett., 2012, 12, 4271–4275, https://doi.org/10.1021/nl301934w Search in Google Scholar

Zhou P., Liu Z., Chen Y., Xiao Y., Huang X., Fan X.G., Bacterial and fungal infections in COVID-19 patients: A matter of concern, Infect. Control Hosp. Epidemiol., 2020, 41, 1124–1125, https://doi.org/10.1017/ice.2020.156 Search in Google Scholar

Zuniga J.M., Cortes A., The role of additive manufacturing and antimicrobial polymers in the COVID-19 pandemic, Expert Rev. Med. Devices, 2020, 17, 477–481, https://doi.org/10.1080/17434440.2020.1756771 Search in Google Scholar