Acceso abierto

Are the mechanical properties of Achilles tendon altered in CrossFit athletes? Reliability and accuracy of myotonometry

, , ,  y   
18 may 2024

Cite
Descargar portada

Alawna M.A., Unver B.H., Yuksel E.O., The Reliability of a Smartphone Goniometer Application Compared With a Traditional Goniometer for Measuring Ankle Joint Range of Motion, J. Am. Podiatr. Med. Assoc., 2019, 109 (1), 22–29, DOI: 10.7547/16-128. Search in Google Scholar

Barreto S., Pierantoni M., Hammerman M., Törnquist E., Le Cann S., Diaz A., Engqvist J. et al., Nanoscale characterization of collagen structural responses to in situ loading in rat Achilles tendons, Matrix Biol., 2023, 115, 32–47, DOI: 10.1016/j.matbio.2022.11.006. Search in Google Scholar

Bizzini M., Mannion A.F., Reliability of a new, hand-held device for assessing skeletal muscle stiffness, Clin. Biomech., 2003, 18, 5, 459–461, DOI: 10.1016/s0268-0033(03)00042-1. Search in Google Scholar

Camy C., Brioche T., Senni K., Bertaud A., Genovesio C., Lamy E., Fovet T. et al., Effects of hindlimb unloading and subsequent reloading on the structure and mechanical properties of Achilles tendon-to-bone attachment, Faseb J., 2022, 36, 10, e22548, DOI: 10.1096/fj.202200713R. Search in Google Scholar

Cardona-Ramirez S., Stoker A.M., Cook J.L., Richard M., Fibroblasts From Common Anterior Cruciate Ligament Tendon Grafts Exhibit Different Biologic Responses to Mechanical Strain, Am. J. Sports Med., 2021, 49, 1, 215–225, DOI: 10.1177/0363546520971852. Search in Google Scholar

Chen L., Cheng Y., Zhou L., Zhang L., Deng X., Quantitative shear wave elastography compared to standard ultrasound (qualitative B-mode grayscalesonography and quantitative power Doppler) for evaluation of achillotendinopathy in treatment-naïve individuals: A cross-sectional study, Adv. Clin. Exp. Med., 2022, 31, 8, 847–854, DOI: 10.17219/acem/147878. PMID: 35593220. Search in Google Scholar

Crawford S.K., Thelen D., Yakey J.M., Heiderscheit B.C., Wilson J.J., Lee K.S., Regional shear wave elastography of Achilles tendinopathy in symptomatic versus contralateral Achilles tendons, Eur. Radiol., 2023, 33, 1, 720–729, DOI: 10.1007/s00330-022-08957-3. Search in Google Scholar

Cronin N.J., Lichtwark G., The use of ultrasound to study muscle-tendon function in human posture and locomotion, Gait Posture, 2013, 37, 305–312, DOI: 10.1016/j.gaitpost.2012.07.024. Search in Google Scholar

De Marchi A., Pozza S., Cenna E., Cavallo F., Gays G., Simbula L., De Petro P., Massè A., Massazza G., In Achilles tendinopathy, the neovascularization, detected by contrast-enhanced ultrasound (CEUS), is abundant but not related to symptoms, Knee Surg. Sports Traumatol. Arthrosc., 2018, 26, 2051–2058, doi.org/10.1007/s00167-017-4710-8 Search in Google Scholar

Feng Y.N., Li Y.P., Liu C.L., Assessing the elastic properties of skeletal muscle and tendon using shearwave ultrasound elastography and MyotonPRO, Sci. Rep., 2018, 8, 17064. Search in Google Scholar

Finnamore E., Waugh C., Solomons L., Transverse tendon stiffness is reduced in people with Achilles tendinopathy: a cross-sectional study, PLoS One, 2019, 14, e0211863. Search in Google Scholar

Fisker F.Y., Kildegaard S., Thygesen M., Grosen K., Pfeiffer-Jensen M., Acute tendon changes in intense CrossFit workout: an observational cohort study, Scand. J. Med. Sci. Sports, 2017, 27, 11, 1258–1262, DOI: 10.1111/sms.12781. Search in Google Scholar

Hui W., Ruyue Y.U., Meng W., Shikun W., Xingyu O., Zhiwen Y., Shuai C.H. et al., Insulin-like growth factor binding protein 4 loaded electrospun membrane ameliorating tendon injury by promoting retention of IGF-1, J. Control Release, 2023, 356, 162–174, DOI: 10.1016/j.jconrel.2023.02.039. Search in Google Scholar

Ianieri G., Saggini R., Marvulli R., Tondi G., Aprile A., Ranieri M., Benedetto G. et al., New approach in the assessment of the tone, elasticity and the muscular resistance: nominal scales vs MYOTON, Int. J. Immunopathol. Pharmacol., 2009, 22, 3, 21–24, DOI: 10.1177/03946320090220S304. Search in Google Scholar

Iwata M., Yamamoto A., Matsuo S., Hatano G., Miyazaki M., Fukaya T., Fujiwara M., Asai Y., Suzuki S., Dynamic Stretching Has Sustained Effects on Range of Motion and Passive Stiffness of the Hamstring Muscles, J. Sports Sci. Med., 2019, 11, 18 (1), 13–20. Search in Google Scholar

Konow N., Azizi E., Roberts T.J., Muscle power attenuation by tendon during energy dissipation, Proc. R. Soc., 2012, 279, 1108–1113, DOI: 10.1098/rspb. 2011.1435. Search in Google Scholar

Konow N., Roberts T., The series elastic shock absorber: tendon elasticity modulates energy dissipation by muscle during burst deceleration, Proc. Biol. Sci., 2015, 7, 282, DOI: 10.1098/rspb.2014.2800. Search in Google Scholar

Kubo K., Miyazaki D., Yamada K., Yata H., Shimoju S., Tsunoda N., Passive and active muscle stiffness in plantar flexors of long distance runners, J. Biomech., 2015, 48, 10, 1937–1943, DOI: 10.1016/j.jbiomech.2015.04.012. Search in Google Scholar

Lazarczuk S.L., Maniar N., Opar D.A., Duhig S.J., Shield A., Barrett R.S., Bourne M.N., Mechanical, Material and Morphological Adaptations of Healthy Lower Limb Tendons to Mechanical Loading: A Systematic Review and Meta-Analysis, Sports Med., 2022, 52, 10, 2405–2429, DOI: 10.1007/s40279-022-01695-y. Search in Google Scholar

Lee Y., Kim M., Lee H., The Measurement of Stiffness for Major Muscles with Shear Wave Elastography and Myoton: A Quantitative Analysis Study, Diagnostics (Basel), 2021, 11, 3, 524, DOI: 10.3390/diagnostics11030524. Search in Google Scholar

Li H., Korcari A., Ciufo D., Mendias C.L., Rodeo S.A., Buckley M.R., Loiselle A.E. et al., Increased Ca 2+ signaling through Ca V 1.2 induces tendon hypertrophy with increased collagen fibrillogenesis and biomechanical properties, BioRxiv, 2023, 24, 119–127, DOI: 10.1101/2023.01.24.525119. Preprint. Search in Google Scholar

Li Y.P., Liu C.L., Zhang Z.J., Feasibility of Using a Portable MyotonPRO Device to Quantify the Elastic Properties of Skeletal Muscle, Med. Sci. Monit., 2022, 28, e934121, DOI: 10.12659/MSM.934121. Search in Google Scholar

Liu C.L., Li Y.P., Wang X.Q., Quantifying the stiffness of Achilles tendon: intra- and Inter-Operator reliability and the effect of ankle joint motion, Med. Sci. Monit., 2018, 24, 4876–4881, DOI: 10.12659/MSM.909531. Search in Google Scholar

Maeda E., Kawamura R., Suzuki T., Matsumoto T., Rapid fabrication of tendon-like collagen gel via simultaneous fibre alignment and intermolecular cross-linking under mechanical loading, Biomed. Mater., 2022, 17, 4, DOI: 10.1088/1748-605X/ac7305. Search in Google Scholar

Magnusson S.P., Kjaer M., The impact of loading, unloading, ageing and injury on the human tendon, J. Physiol., 2019, 597, 1283–1298, DOI: 10.1113/JP275450. Search in Google Scholar

Mahan J., Damodar D., Trapana E., Barnhill S., Ugarte Nuno A., Smyth N.A., Aiyer A. et al., Achilles tendon complex: The anatomy of its insertional footprint on the calcaneus and clinical implications, J. Orthop., 2019, 17, 221–227, DOI: 10.1016/j.jor.2019.06.008. Search in Google Scholar

Miyamoto N., Hirata K., Inoue K., Hashimoto T., Muscle Stiffness of the VastusLateralis in Sprinters and Long-Distance Runners, Med. Sci. Sports Exerc., 2019, 51, 10, 2080–2087, DOI: 10.1249/MSS.0000000000002024. Search in Google Scholar

Morgan G.E., Martin R., Williams L., Objective assessment of stiffness in Achilles tendinopathy: a novel approach using the MyotonPRO, BMJ Open Sport Exerc. Med., 2018, 4, e000446. Search in Google Scholar

Mrozik K., Błach B., Kusiak M., Janusiak M., Pożarowszczyk B., Kisilewicz A., Kawczyński A. et al., Defects of plyometric training on the rectus femoris muscle stiffness among volleyball players measured by myotometry, Polish J. Sport Med., 2017, 4 (4), 273–279, DOI: 10.5604/01.3001.0010.7966. Search in Google Scholar

Nguyen A.P., Detrembleur C., Fisette P., Selves C., Mahaudens P., MyotonPro Is a Valid Device for Assessing Wrist Biomechanical Stiffness in Healthy Young Adults, Front Sports Act. Living, 2022, 4, 797975. Search in Google Scholar

Nuñez F.J., Ritzmann R., Hernandez-Abad F., Martinez J.C., Suarez-Arrones L., Muscle Architecture, Morphology, and Mechanical and Functional Properties of Biceps Femoris Long Head in Professional Soccer Players with a Prior Healed Injured Hamstring, J. Clin. Med., 2022, 11, 23, 7222, DOI: 10.3390/jcm11237222. Search in Google Scholar

Orner S., Kratzer W., Schmidberger J., Quantitative tissue parameters of Achilles tendon and plantar fascia in healthy subjects using a handheld myotonometer, J. Bodyw. Mov. Ther., 2018, 22, 105–111, DOI: 10.1016/j.jbmt.2017.06.015. Search in Google Scholar

Pożarowszczyk B., Pawlaczyk W., Smoter M., Zarzycki A., Mroczek D., Kumorek M., Witkowski K. et al., Effects of Karate Fights on Achilles Tendon Stiffness Measured by Myotonometry, J. Hum. Kinet., 2017, 56, 93–97, DOI: 10.1515/hukin-2017-0026. Search in Google Scholar

Ramírez-Delacruz M., Bravo-Sánchez A., Esteban-García P., Jiménez F., Abián-Vicén J., Effects of Plyometric Training on Lower Body Muscle Architecture, Tendon Structure, Stiffness and Physical Performance: A Systematic Review and Meta-analysis, Sports Med. Open., 2022, 8, 1, 40, DOI: 10.1186/s40798-022-00431-0. Search in Google Scholar

Rogers S.A., Whatman C.S., Pearson S.N., Kilding A.E., Assessments of Mechanical Stiffness and Relationships to Performance Determinants in Middle-Distance Runners, Int. J. Sports Physiol. Perform., 2017, 12, 10, 1329–1334, DOI: 10.1123/ijspp.2016-0594. Search in Google Scholar

Sawadkar P., Player D., Bozec L., Mudera V., The mechanobiology of tendon fibroblasts under static and uniaxial cyclic load in a 3D tissue engineered model mimicking native extracellular matrix, J. Tissue Eng. Regen. Med., 2020, 14, 1, 135–146, DOI: 10.1002/term.2975. Search in Google Scholar

Schneebeli A., Falla D., Clijsen R., Barbero M., Myotonometry for the evaluation of Achilles tendon mechanical properties: a reliability and construct validity study, BMJ Open Sport Exerc. Med., 2020, 6, 1, e000726, DOI: 10.1136/bmjsem-2019-000726. Search in Google Scholar

Tas S., Salkin Y., An investigation of the sex-related differences in the stiffness of the Achilles tendon and gastrocnemius muscle: Inter-observer reliability and inter-day repeatability and the effect of ankle joint motion, Foot, 2019, 41, 44–50, DOI: 10.1016/j.foot.2019.09.003 Search in Google Scholar

Tsuchiya Y., Takakura H., Osawa S., Izawa T., Impact of high-intensity interval training on tendon related gene expression in rat Achilles tendon, Biochem. Biophys. Res. Commun., 2023, 658, 116–121, DOI: 10.1016/j.bbrc.2023.03.076. Search in Google Scholar

Vatovec R., Marušič J., Marković G., Šarabon N., Effects of Nordic hamstring exercise combined with glider exercise on hip flexion flexibility and hamstring passive stiffness. J. Sports Sci., 2021, 39, 20, 2370–2377, DOI: 10.1080/02640414.2021.1933350. Search in Google Scholar

Wang H.K., Lin K.H., Su S.C., Effects of tendon viscoelasticity in Achilles tendinosis on explosive performance and clinical severity in athletes, Scand. J. Med. Sci. Sports, 2012, 22, e147–e155, DOI: 10.1111/j.1600-0838.2012.01511.x. Search in Google Scholar

Winnicki K., Ochała-Kłos A., Rutowicz B., Pękala P.A., Tomaszewski K.A., Functional anatomy, histology and biomechanics of the human Achilles tendon – A comprehensive review, Ann. Anat., 2020, 229, 151461, DOI: 10.1016/j.aanat.2020.151461. Search in Google Scholar

Yu C., Deng L., Li L., Zhang X., Fu W., Exercise Effects on the Biomechanical Properties of the Achilles Tendon-A Narrative Review, Biology, 2022, 11, 2, 172, DOI: 10.3390/biology11020172. Search in Google Scholar

Yu J.F., Chang T.T., Zhang Z.J., The Reliability of MyotonPRO in Assessing Masseter Muscle Stiffness and the Effect of Muscle Contraction, Med. Sci. Monit., 2020, 26, e926578, DOI: 10.12659/MSM.926578. Search in Google Scholar

Zhang Z.J., Ng G.Y., Fu S.N., Effects of habitual loading on patellar tendon mechanical and morphological properties in basketball and volleyball players, Eur. J. Appl. Physiol., 2015, 115, 11, 2263–2269, DOI: 10.1007/s00421-015-3209-6. Search in Google Scholar