Acceso abierto

The effect of three run-up techniques on kinetic and kinematic variables of the stag ring leap with throw-catch of the ball in rhythmic gymnastics

, ,  y   
26 abr 2023

Cite
Descargar portada

Aagaard P., Simonsen E.B., Andersen JL., Magnusson P., Dyhre-Poulsen P., Increased Rate of Force Development and Neural Drive of Human Skeletal Muscle Following Resistance Training, J. Appl. Physiol., 2002, 93 (4), 1318–1326. Search in Google Scholar

Aji-Putra R.B., Soenyoto T., Darmawan A., Irsyada R., Contribution of Leg Flexibility, Limb Length, Leg Power for the Split Leap Skills of Rhythmic Gymnastics Athletes, Int. J. Hum. Mov. Sports Sci., 2021, 9 (4), 648–653, https://doi.org/10.13189/saj.2021.090407. Search in Google Scholar

Akkari-Ghazouani H., Mkaouer B., Amara S., Chtara M., Kinetic and Kinematic Analysis of Three Different Execution Modes of Stag Leap With and Without Throw-Catch Ball in Rhythmic Gymnastics, Sci. Gymnastics. J., 2020, 12 (3), 255–434. Search in Google Scholar

Akkari-Ghazouani H., Amara S., Jemni M., Chtara M., Mkaouer B., Effect of Assemblé-Step on Kinetic and Kinematic Parameters of Stag Ring Leaps With and Without Throw-Catch of The Ball in Rhythmic Gymnastics, Sci. Gymnastics. J., 2022, 14 (3), 299–310, https://doi.org/10.52165/sgj.14.3.299-310. Search in Google Scholar

Akkari-Ghazouani H., Mkaouer B., Amara S., Jemni M., Chtara M., Effect of Glissade-Step on Kinetic and Kinematic Variables of Stag Ring Leaps With and Without Throw-Catch of The Ball in Rhythmic Gymnastics, Sports. Biomech., 2023, 22 (2), 222–234, https://doi.org/10.1080/14763141.2022.2087535. Search in Google Scholar

Ashby B.M., Heegaard J.H., Role of Arm Motion in the Standing Long Jump, J. Biomech., 2002, 35 (12), 1631–1637, https://doi.org/10.1016/S0021-9290(02)00239-7. Search in Google Scholar

Batista A., Lemos M.E., Lebre E., Ávila-Carvalho L., Active and Passive Lower Limb Flexibility in High Level Rhythmic Gymnastics, Sci. Gymnastics. J., 2015, 7 (2), 55–66. Search in Google Scholar

Batista A., Garganta R., Ávila-Carvalho L., Body Difficulties in Rhythmic Gymnastics Routines, Sci. Gymnastics. J., 2019, 11 (1), 37–55. Search in Google Scholar

Botti M., do Nascimento J.V., The Teaching-Learning- Training Process in Rhytmic Gymnastics Supported by the Ecological Theory, Sci. Gymnastics. J., 2011, 3 (1), 35–48. Search in Google Scholar

Brønd J.C., Elbæk L., Problem Based Learning and the Use of Digital Tools, for Improving Use and Understanding of Biomechanics in Practical Sports Subjects, [in:] Froberg K., Skovgaard T., Proceedings of the 2nd NORDPLUS-IDROTT Conference, University of Southern Denmark, Odense, Region of Southern Denmark, Denmark, 2013, https://www.sdu.dk/-/media/sidste_chance/files/om_sdu/institutter/iob/forskningsnetvaerk/nordplus2013/abstractbook.pdf Search in Google Scholar

Coppola S., Albano D., Sivoccia I., Vastola R., Biomechanical Analysis of a Rhythmic Gymnastics Jump Performed Using Two Run-Up Techniques, J. Phys. Educ. Sport., 2020, 20 (1), 37–42, https://doi.org/10.7752/jpes.2020.01005. Search in Google Scholar

De Leva P., Adjustments to Zatsiorsky-Seluyanov’s Segment Inertia Parameters, J. Biomech., 1996, 29 (9),1223–1230. Search in Google Scholar

Despina T., George D., George T., Sotiris P., Alessandra D.C., George K., Maria R., Stavros K., Short-Term Effect of Whole-Body Vibration Training on Balance, Flexibility and Lower Limb Explosive Strength in Elite Rhythmic Gymnasts, Hum. Mov. Sci., 2014, 33, 149–158, https://doi.org/10.1016/j.humov.2013.07.023. Search in Google Scholar

di Cagno A., Baldari C., Battaglia C., Guidetti L., Piazza M., Anthropometric Characteristics Evolution in Elite Rhythmic Gymnasts, Ital. J. Anat. Embryol., 2008, 113 (1), 29–36. Search in Google Scholar

di Cagno A., Baldari C., Battaglia C., Gallotta M.C., Videira M., Piazza M., Guidetti L., Preexercise Static Stretching Effect on Leaping Performance in Elite Rhythmic Gymnasts, J. Strength. Cond. Res., 2010, 24 (8), 1995–2000. Search in Google Scholar

dos Reis Furtado L.N., de Toledo E., Fernandes Antualpa K., Carbinatto M.V., Ballet Movements in Rhythmic Gymnastics Routines: An Analisys From the Last Two Code of Points (2013–2016 and 2017–2020), Sci. Gymnastics. J., 2020, 12 (3), 395–406. Search in Google Scholar

Faul F., Erdfelder E., Buchner A., Lang A.G., Statistical Power Analyses Using G*Power 3.1: Tests for Correlation and Regression Analyses, Behav. Res. Methods., 2009, 41 (4), 1149–1160, https://doi.org/10.3758/BRM.41.4.1149. Search in Google Scholar

FIG, Code Of Point Rhythmic Gymnastics, Fédération Internationale de Gymnastique, Lausanne Suissland, 2020. Search in Google Scholar

Frutuoso A.S., Diefenthaeler F., Vaz M.A., Freitas Cde L., Lower Limb Asymmetries in Rhythmic Gymnastics Athletes, Int. J. Sports. Phys. Ther., 2016, 11, 34–43. Search in Google Scholar

Gateva M., Modified Field Test for Determining the Specific Endurance in Rhythmic Gymnastics, J. Appl. Sports. Sci., 2019, 3 (1), 3–12, https://doi.org/10.37393/jass.2019.01.1 Search in Google Scholar

Gorwa J., Dworak L.B., Michnik R., Jurkojć J., Kinematic analysis of modern dance movement “stag jump” within the context of impact loads, injury to the locomotor system and its prevention, Med. Sci. Monit., 2014, 20, 1082–1089, https://doi.org/10.12659/msm.890126. Search in Google Scholar

Gorwa J., Michnik R., Nowakowska-Lipiec K., Jurkojć J., Jochymczyk-Woźniak K., Is it possible to reduce loads of the locomotor system during the landing phase of dance figures? Biomechanical analysis of the landing phase in Grand Jeté, Entrelacé and Ballonné, Acta. Bioeng. Biomech., 2019, 21 (4), 111–121, https://doi.org/10.37190/ABB-01429-2019-02. Search in Google Scholar

Hopkins W.G., A New View af Statistics. A Scale of Magnitudes for Effect Statistics, Sport. Sci., 2002, www.sportsci.org/resource/stats/effectmag.html Search in Google Scholar

Hopkins W.G., Marshall S.W., Batterham A.M., Hanin J., Progressive Statistics for Studies in Sports Medicine and Exercise Science, Med. Sci. Sports. Exerc., 2009, 41 (1), 3–13, https://doi.org/10.1249/MSS.0b013e31818cb278. Search in Google Scholar

Huang C., Liu G.C., Sheu T.Y., Kinematic Analysis of The Volleyball Back Row Jump Spike, Proceedings of the XVII International Symposium on Biomechanics in Sports, Perth, Western Australia, Australia, 1999, https://ojs.ub.uni-konstanz.de/cpa/article/view/4049. Search in Google Scholar

Jemni M., The Science of Gymnastics: Advanced Concepts, Routledge, 2017. Search in Google Scholar

Jensen R.L., Rate of Force Development and Time to Peak Force During Plyometric Exercises, Proceedings of the XXVI Conference of the International Society of Biomechanics in Sports, Northern Michigan University, 2008, https://commons.nmu.edu/cgi/viewcontent.cgi?article=1027&context=facwork_conferencepapers Search in Google Scholar

Komanthi K., Theodosis E., Apostolos S., Eating Disorders in the World of Sport: The Experiences of Rhythmic Gymnasts, Biol. Exerc., 2012, 8 (2), 19–31, https://doi.org/10.4127/jbe.2012.0057. Search in Google Scholar

Kwitniewska A., Dornowski M., Hökelmann A., Quantitative and Qualitative Analysis of International Standing in Group Competition in the Sport of Rhythmic Gymnastics, Balt. J. Health. Phys. Act., 2009, 1 (2), 118–125, https://doi.org/10.2478/v10131-009-0014-9. Search in Google Scholar

Laffaye G., Wagner P., Eccentric Rate of Force Development Determines Jumping Performance, Comput. Methods. Biomech. Biomed. Engin., 2013, 16, 82–83. Search in Google Scholar

Mkouer B., Amara S., Tabka Z., Split Leap With and Without Ball Performance Factors in Rhythmic Gymnastic, Sci. Gymnastics. J., 2012, 4 (2), 75–81. Search in Google Scholar

Nemtsev O., Doronin A., Nemtseva N., Sukhanov S., Shubin M., Features of Takeoff Phase in Long Jumps With Various Run-Up Lengths, Proceedings of the XXXII International Conference of Biomechanics in Sports, Johnson City, TN, USA, 2014, https://ojs.ub.uni-konstanz.de/cpa/article/view/6066 Search in Google Scholar

Oddsson L., What Factors Determine Vertical Jumping Height?, Proceedings of the V International Symposium on Biomechanics in Sports, Athens, Greece, 1987, https://ojs.ub.uni-konstanz.de/cpa/article/view/2325. Search in Google Scholar

Polat S.Ç., The Effect of Two Different Take Offs on Split Leap and Stag Leap With Ring Parameters in Rhythmic Gymnastics, Pedagogical. Res., 2018, 3 (4), 13, https://doi.org/10.20897/pr/3905. Search in Google Scholar

Purenović T., Bubanj S., Popović R., Stanković R., Bubanj R., Comparative Kinematics Analysis of Different Split Front Leaps, Sport. Sci., 2010, 3 (1), 13–20. Search in Google Scholar

Putra R.B.A., Soenyoto T., Darmawan A., Irsyada R., Basic Movements of the Split Leap Rhythmic Gymnastics, Proceedings of the 5th International Seminar of Public Health and Education, ISPHE, Universitas Negeri Semarang, Semarang, Indonesia, 2020, https://eudl.eu/doi/10.4108/eai.22-7-2020.2300304. Search in Google Scholar

Rodríguez-Rosell D., Pareja-Blanco F., Aagaard P., González-Badillo J.J., Physiological and Methodological Aspects of Rate of Force Development Assessment in Human Skeletal Muscle, Clin. Physiol. Funct. Imaging., 2018, 38 (5), 743–762, https://doi.org/10.1111/cpf.12495. Search in Google Scholar

Sierra-Palmeiro E., Bobo-Arce M., Pérez-Ferreirós A., Fernández-Villarino M.A., Longitudinal Study of Individual Exercises in Elite Rhythmic Gymnastics, Front. Psychol., 2019, 10, 1496, https://doi.org/10.3389/fpsyg.2019.01496. Search in Google Scholar

Skopal L., Netto K., Aisbett B., Takla A., Castricum T., The Effect of a Rhythmic Gymnastics-Based Power-Flexibility Program on the Lower Limb Flexibility and Power of Contemporary Dancers, Int. J. Sports. Phys. Ther., 2020, 15 (3), 343–364. Search in Google Scholar

Tai W.H., Wang L.I., Peng H.T., Biomechanical Comparisons of One-Legged and Two-Legged Running Vertical Jumps, J. Hum. Kinet., 2018, 64 (1), 71–76, https://doi.org/10.1515%2Fhukin-2017-0185. Search in Google Scholar

Vanrenterghem J., Lees A., Lenoir M., Aerts P., De Clercq D., Performing The Vertical Jump: Movement Adaptations For Submaximal Jumping, Hum. Mov. Sci., 2004, 22 (6), 713–727. Search in Google Scholar

Wagner J.M., Rhodes J.A., Patten C., Reproducibility and Minimal Detectable Change of Three-Dimensional Kinematic Analysis of Reaching Tasks in People With Hemiparesis After Stroke, Phys. Ther., 2008, 88 (5), 652–663, https://doi.org/10.2522/ptj.20070255. Search in Google Scholar

Zar J., Multiple comparisons, Bio. Stat. Anal., 1984, 1, 185–205. Search in Google Scholar