Acceso abierto

Kinematic analysis of L4–L5 spinal segment with spondylolysis and different types of grade 1 spondylolisthesis: a nonlinear finite element study

,  y   
22 jul 2022

Cite
Descargar portada

Al-Rubaie S.Y., Hamandi S.J., Mohson K.I., Kinematic validation of an intact L4–L5 spinal unit finite element model constructed from an educational model, Int. J. Mech. Eng., 2022, 7 (2). Search in Google Scholar

Bashkuev M., Reitmaier S., Schmidt H., Is the sheep a suitable model to study the mechanical alterations of disc degeneration in humans? A probabilistic finite element model study, J. Biomech., 2019, 84, DOI: 10.1016/J.JBIOMECH.2018.12.042. Search in Google Scholar

Chamoli U., Chen A.S., Diwan A.D., Interpedicular kinematics in an in vitro biomechanical assessment of a bilateral lumbar spondylolytic defect, Clin. Biomech., 2014, 29 (10), DOI: 10.1016/J.CLINBIOMECH.2014.10.002. Search in Google Scholar

Chen L., Feng Y., Che C.Q., Gu Y., Wang L.J., Yang H.L., Influence of Sacral Slope on the Loading of Pedicle Screws in Postoperative L5/S1 Isthmic Spondylolisthesis Patient: A Finite Element Analysis, Spine, 2016, 41 (23), DOI: 10.1097/BRS.0000000000001632. Search in Google Scholar

Chuang W.H., Kuo Y.J., Lin S.C., Wang C.W., Chen S.H., Chen Y.J., Hwang J.R., Comparison among load-, ROM-, and displacement-controlled methods used in the lumbosacral nonlinear finite-element analysis, Spine, 2013, 38 (5), DOI: 10.1097/BRS.0B013E31828251F9. Search in Google Scholar

Denard P.J., Holton K.F., Miller J., Fink H.A., Kado D.M., Yoo J.U., Marshall L.M., Lumbar spondylolisthesis among elderly men: prevalence, correlates, and progression, Spine, 2010, 35 (10), DOI: 10.1097/BRS.0b013e3181bd9e19. Search in Google Scholar

El-Rich M., Villemure I., Labelle H., Aubin C.E., Mechanical loading effects on isthmic spondylolytic lumbar segment: finite element modelling using a personalised geometry, Comput. Methods Biomech. Biomed. Engin., 2009, 12 (1), DOI: 10.1080/10255840802069823. Search in Google Scholar

Fan J., Yu G.R., Liu F., Zhao J., Zhao W.D., A biomechanical study on the direct repair of spondylolysis by different techniques of fixation, Orthop. Surg., 2010, 2 (1), DOI: 10.1111/J.1757-7861.2009.00064.X. Search in Google Scholar

Garet M., Reiman M.P., Mathers J., Sylvain J., Nonoperative Treatment in Lumbar Spondylolysis and Spondylolisthesis: A Systematic Review, Sports Health, 2013, 5 (3), DOI: 10.1177/1941738113480936. Search in Google Scholar

Haddas R., Xu M., Lieberman I., Yang J., Finite Element Based-Analysis for Pre and Post Lumbar Fusion of Adult Degenerative Scoliosis Patients, Spine Deform, 2019, 7 (4), DOI: 10.1016/J.JSPD.2018.11.008. Search in Google Scholar

Haj-Ali R., Wolfson R., Masharawi Y., A patient specific computational biomechanical model for the entire lumbosacral spinal unit with imposed spondylolysis, Clin. Biomech., 2019, 68, DOI: 10.1016/J.CLINBIOMECH.2019.05.022. Search in Google Scholar

Heuer F., Schmidt H., Klezl Z., Claes L., Wilke H.J., Stepwise reduction of functional spinal structures increase range of motion and change lordosis angle, J. Biomech., 2007, 40 (2), DOI: 10.1016/J.JBIOMECH.2006.01.007. Search in Google Scholar

Jaramillo H.E., Gómez L., García J.J., A finite element model of the L4-L5-S1 human spine segment including the heterogeneity and anisotropy of the discs, Acta Bioeng. Biomech., 2015, 17 (2), DOI: 10.5277/ABB-00046-2014-02. Search in Google Scholar

Jayakumar P., Nnadi C., Saifuddin A., MacSweeney E., Casey A., Dynamic degenerative lumbar spondylolisthesis: diagnosis with axial loaded magnetic resonance imaging, Spine, 2006, 31 (10), DOI: 10.1097/01.BRS.0000216602.98524.07. Search in Google Scholar

Jiang S., Li W., Biomechanical study of proximal adjacent segment degeneration after posterior lumbar interbody fusion and fixation: a finite element analysis, J. Orthop. Surg. Res., 2019, 14 (1), DOI: 10.1186/S13018-019-1150-9. Search in Google Scholar

Joszko K., Gzik M., Wolański W., Gzik-Zroska B., Kawlewska E., Biomechanical evaluation of human lumbar spine in spondylolisthesis, J. Appl. Biomed., 2018, 16 (1), DOI: 10.1016/J.JAB.2017.10.004. Search in Google Scholar

Khan S.A., Sattar A., Khanzada U., Adel H., Adil S.O., Hussain M., Facture of the Pars Interarticularis with or without Spondylolisthesis in an Adult Population in a Developing Country: Evaluation by Multidetector Computed Tomography, Asian Spine J., 2017, 11 (3), DOI: 10.4184/ASJ.2017.11.3.437. Search in Google Scholar

Ling Q., He E., Zhang H., Lin H., Huang W., A novel narrow surface cage for full endoscopic oblique lateral lumbar interbody fusion: A finite element study, J. Orthop. Sci., 2019, 24 (6), DOI: 10.1016/J.JOS.2019.08.013. Search in Google Scholar

Liu T., El-Rich M., Effects of nucleus pulposus location on spinal loads and joint centers of rotation and reaction during forward flexion: A combined finite element and Musculoskeletal study, J. Biomech., 2020, 104, DOI: 10.1016/J.JBIOMECH.2020.109740. Search in Google Scholar

Masni-Azian, Tanaka M., Biomechanical investigation on the influence of the regional material degeneration of an intervertebral disc in a lower lumbar spinal unit: A finite element study, Comput. Biol. Med., 2018, 98, DOI: 10.1016/J.COMPBIOMED.2018.05.010. Search in Google Scholar

Matsunaga S., Ijiri K., Hayashi K., Nonsurgically managed patients with degenerative spondylolisthesis: a 10- to 18-year follow-up study, J. Neurosurg., 2000, 93 (2), DOI: 10.3171/SPI.2000.93.2.0194. Search in Google Scholar

McGregor A.H., Cattermole H.R., Hughes S.P.F., Global spinal motion in subjects with lumbar spondylolysis and spondylolisthesis: does the grade or type of slip affect global spinal motion?, Spine, 2001, 26 (3), DOI: 10.1097/00007632-200102010-00013. Search in Google Scholar

Miao J., Wang S., Wan Z., Park W.M., Xia Q., Wood K., Li G., Motion characteristics of the vertebral segments with lumbar degenerative spondylolisthesis in elderly patients, Eur. Spine J., 2013, 22 (2), DOI: 10.1007/s00586-012-2428-3. Search in Google Scholar

Naserkhaki S., Arjmand N., Shirazi-Adl A., Farahmand F., El-Rich M., Effects of eight different ligament property datasets on biomechanics of a lumbar L4-L5 finite element model, J. Biomech., 2018, 70, DOI: 10.1016/J.JBIOMECH.2017.05.003. Search in Google Scholar

Peng Y., Du X., Huang L., Li J., Zhan R., Wang W., Xu B., Wu S., Peng C., Chen S., Optimizing bone cement stiffness for vertebroplasty through biomechanical effects analysis based on patientspecific three-dimensional finite element modeling, Med. Biol. Eng. Comput., 2018, 56 (11), DOI: 10.1007/S11517-018-1844-X. Search in Google Scholar

Phan K.H., Daubs M.D., Kupperman A.I., Scott T.P., Wang J.C., Kinematic analysis of diseased and adjacent segments in degenerative lumbar spondylolisthesis, Spine J., 2015, 15 (2), DOI: 10.1016/J.SPINEE.2014.08.453. Search in Google Scholar

Ramakrishna V.A.S., Chamoli U., Viglione L.L., Tsafnat N., Diwan A.D., Mild (not severe) disc degeneration is implicated in the progression of bilateral L5 spondylolysis to spondylolisthesis, BMC Musculoskelet. Disord., 2018, 19 (1), DOI: 10.1186/S12891-018-2011-0. Search in Google Scholar

Ramakrishna V.A.S., Chamoli U., Viglione L.L., Tsafnat N., Diwan A.D., The Role of Sacral Slope in the Progression of a Bilateral Spondylolytic Defect at L5 to Spondylolisthesis: A Biomechanical Investigation Using Finite Element Analysis, Glob Spine J., 2018, 8 (5), DOI: 10.1177/2192568217735802. Search in Google Scholar

Remus R., Lipphaus A., Neumann M., Bender B., Calibration and validation of a novel hybrid model of the lumbosacral spine in ArtiSynth-The passive structures, PLoS One, 2021, 16 (4), DOI: 10.1371/JOURNAL.PONE.0250456. Search in Google Scholar

Rohlmann A., Zander T., Schmidt H., Wilke H.J., Bergmann G., Analysis of the influence of disc degeneration on the mechanical behaviour of a lumbar motion segment using the finite element method, J. Biomech., 2006, 39 (13), DOI: 10.1016/J.JBIOMECH.2005.07.026. Search in Google Scholar

Ruberté L.M., Natarajan R.N., Andersson G.B., Influence of single-level lumbar degenerative disc disease on the behavior of the adjacent segments-a finite element model study, J. Biomech., 2009, 42 (3), DOI: 10.1016/J.JBIOMECH.2008.11.024. Search in Google Scholar

Schmidt H., Galbusera F., Rohlmann A., Zander T., Wilke H.J., Effect of multilevel lumbar disc arthroplasty on spine kinematics and facet joint loads in flexion and extension: a finite element analysis, Eur. Spine J., 2012, 21, DOI: 10.1007/S00586-010-1382-1. Search in Google Scholar

Schmidt H., Heuer F., Drumm J., Klezl Z., Claes L., Wilke H.J., Application of a calibration method provides more realistic results for a finite element model of a lumbar spinal segment, Clin. Biomech., 2007, 22 (4), DOI: 10.1016/J.CLINBIOMECH.2006.11.008. Search in Google Scholar

Spivak J.M., Kummer F.J., Chen D., Quirno M., Kamerlink J.R., Intervertebral foramen size and volume changes in low grade, low dysplasia isthmic spondylolisthesis, Spine, 2010, 35 (20), DOI: 10.1097/BRS.0B013E3181CCC59D. Search in Google Scholar

Sterba M., Arnoux P.J., Labelle H., Warner W.C., Aubin C.É., Biomechanical analysis of spino-pelvic postural configurations in spondylolysis subjected to various sportrelated dynamic loading conditions, Eur. Spine J., 2018, 27 (8), DOI: 10.1007/S00586-018-5667-0. Search in Google Scholar

Wang J.P., Zhong Z.C., Cheng C.K., Chen C.S., Yu C.H., Chang T.K., Wei S.H., Finite element analysis of the spondylolysis in lumbar spine, Biomed. Mater Eng., 2006, 16 (5). Search in Google Scholar

Wang W., Aubin C.E., Cahill P., Baran G., Arnoux P.J., Parent S., Labelle H., Biomechanics of high-grade spondylolisthesis with and without reduction, Med. Biol. Eng. Comput., 2016, 54 (4), DOI: 10.1007/S11517-015-1353-0. Search in Google Scholar

Weisse B., Aiyangar A.K., Affolter C., Gander R., Terrasi G.P., Ploeg H., Determination of the translational and rotational stiffnesses of an L4–L5 functional spinal unit using a specimen-specific finite element model, J. Mech. Behav. Biomed. Mater, 2012, 13, DOI: 10.1016/J.JMBBM.2012.04.002. Search in Google Scholar

Xiao Z., Wang L., Gong H., Zhu D., Zhang X., A non-linear finite element model of human L4–L5 lumbar spinal segment with three-dimensional solid element ligaments, Theor. Appl. Mech. Lett., 2011, 1 (6), DOI: 10.1063/2.1106401. Search in Google Scholar

Yao Q., Wang S., Shin J.H., Li G., Wood K.B., Lumbar Facet Joint Motion in Patients with Degenerative Spondylolisthesis, J. Spinal Disord. Tech., 2013, 26 (1), DOI: 10.1097/BSD.0B013E31827A254F. Search in Google Scholar

Zhu R., Niu W.X., Zeng Z.L., Tong J.H., Zhen Z.W., Zhou S., Yu Y., Cheng L.M., The effects of muscle weakness on degenerative spondylolisthesis: A finite element study, Clin. Biomech., 2017, 41, DOI: 10.1016/J.CLINBIOMECH.2016.11.007. Search in Google Scholar