This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Bissinger O., Kreutzer K., Gotz C., Hapfelmeier A., Pautke Ch., Vogt S., Wexel G., Wolff K.-D., Tischer T., Prodinger P.M., A biomechanical, micro-computertomographic and histological analysis of the influence of diclofenac and prednisolone on fracture healing in vivo, BMC Musc. Dis., 2016, 17, DOI: 10.1186/s12891-016-1241-2.Search in Google Scholar
Bochud N., Vallet Q., Minonzio J.-G., Laugier P., Predicting bone strength with ultrasonic guided waves, Sci. Rep., 2017, 7, DOI: 10.1038/srep43628.Search in Google Scholar
Bowman S.M., Gibson L.J., Hayes, W.C., McMahon T.A., Results from demineralized bone creep tests suggest that collagen is responsible for the creep behavior of bone, J. Biomech. Eng., 1999, 121, DOI: 10.1115/1.2835112.Search in Google Scholar
Burstein A.H., Zika J.M., Heiple K.G., Klein L., Contribution of collagen and mineral to the elastic-plastic properties of bone, JBJS, 1975, 57, 956–961.Search in Google Scholar
Capanema N.S.V., Mansur A.A.P., Carvalho S.M., Silva A.R.P., Ciminelli V.S., Mansur H.S., Niobium-Doped Hydroxyapatite Bioceramics: Synthesis, Characterization and In Vitro Cytocompatibility, Materials, 2015, 8, DOI: 10.3390/ma8074191.Search in Google Scholar
Cottrell J., O’Connor J.P., Effect of Non-Steroidal Anti-Inflammatory Drugs on Bone Healing, Pharmac., 2010, 3, DOI: 10.3390/ph3051668.Search in Google Scholar
Currey J.D., The design of mineralized hard tissues for their mechanical functions, J. Exp. Biol., 1999, 202, DOI: 10.1242/jeb.202.23.3285.Search in Google Scholar
Currey J.D., What determines the bending strength of compact bone?, J. Exp. Biol., 1999, 202, DOI: 10.1242/jeb.202.18.2495.Search in Google Scholar
Dobrzyńnski M., Pezowicz C., Tomanik M., Kuropka P., Dudek K., Fita K., Styczyńska M., Wiglusz R.J., Modulating effect of selected pharmaceuticals on bone in female rats exposed to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD), RSC Advances, 2018, 8 (48), DOI: 10.1039/C8RA03619E.Search in Google Scholar
Donnelly E., Williams R.M., Downs S.A., Dickinson M.E., Quasistatic and dynamic nanomechanical properties of cancellous bone tissue relate to collagen content and organization, J. Mater. Res., 2006, 21, DOI: 10.1557/jmr.2006.0259.Search in Google Scholar
Drouet Ch., Aufray M., Rollin-Martinet S., Vandecandelaere N., Grossin D., Rossignol F., Champion E., Navrotsky A., Rey Ch., Nanocrystalline apatites: The fundamental role of water, Am. Min., 2018, 103, DOI: 10.2138/am-2018-6415.Search in Google Scholar
Ellingham S.T.D., Thompson T.J.U., Islam M., Thermogravimetric analysis of property changes and weight loss in incinerated bone, Pal. Pal. Pal., 2015, 438, DOI: 10.1016/j.paleo.2015.08.009.Search in Google Scholar
Förstera Y., Schulze S., Penk A., Neuber Ch., Moler S., Hintze V., Scharnweber D., Schnabelrauch M., Pietzsch J., Huster D., Rammelt S., The influence of different artificial extracellular matrix implant coatings on the regeneration of a critical size femur defect in rats, Mater. Sci. Eng. C., 2020, 116, DOI: 10.1016/j.msec.2020.111157.Search in Google Scholar
Gardinier J.D., Rostami N., Lauren J., Zhang C., Bone adaptation in response to treadmill exercise in young and adult mice, Bone Rep., 2018, 8, DOI: 10.1016/j.bonr.2018.01.003.Search in Google Scholar
Garner E., Lakes R., Lee T., Swan, C., Brand R., Viscoelastic dissipation in compact bone: Implications for stress-induced fluid flow in bone, J. Biom. Eng., 2000, 122, DOI: 10.1115/1.429638.Search in Google Scholar
Gauza-Włodarczyk M., Kubisz L., Mielcarek S., Włodarczyk D., Comparison of the thermal properties of fish collagen and bovine collagen in the temperature range 298–670 K, Mater. Sci. Eng. C., 2017, 80, DOI: 10.1016/j.msec.2017.06.012.Search in Google Scholar
Górecka Ż., Idaszek J., Kołbuk D., Choińska E., Chlanda A., Święszkowski W., The effect of diameter of fibre on formation of hydrogen bonds and mechanical properties of 3Dprinted PCL, Mater. Sci. Eng. C., 2020, 114, DOI: 10.1016/j.msec.2020.111072.Search in Google Scholar
Hoehne G., Hemminger W., Flammersheim H.-J., Differential Scanning Calorimetry, Springer-Verlag, Berlin, 1996Search in Google Scholar
Iwamoto J., Shimamura Ch., Takeda T., Abe H., Ichimura S., Sato Y., Toyama Y., Effects of treadmill exercise on bone mass, bone metabolism and calciotropic hormones in young growing rats, JBMM, 2004, 22, DOI: 10.1007/s00774-003-0443-5.Search in Google Scholar
Jamsa T., Jalovaara P., Peng Z., Vaananen H.K., Tuukkanen J., Comparison of three-point bending test and peripheral quantitative computed tomography analysis in the evaluation of the strength of mouse femur and tibia, Bone, 1998, 23, DOI: 10.1016/s8756-3282(98)00076-3.Search in Google Scholar
Jepsen K.J., Silva M.J., Vashishth D., Guo X.E., van der Meulen M.Ch., Establishing Biomechanical Mechanisms in Mouse Model: Practical Guidelines for Systematically Evaluating Phenotypic Changes in the Diaphyses of Long Bones, JBMR, 2015, 30, DOI: 10.1002/jbmr.2539.Search in Google Scholar
Kodama Y., Umemura Y., Nagasawa S., Beamer W.G., Donahue L.R., Rosen C.R., Baylink D.J., Farley J.R., Exercise and mechanical loading increase periosteal bone formation and whole bone strength in C57BL/6J mice but not in C3H/Hej mice, Cal. Tiss. Inter., 2000, 66, DOI: 10.1007/s002230010060.Search in Google Scholar
Landis W.J., The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix, Bone, 1995, 16, DOI: 10.1016/8756-3282(95)00076-p.Search in Google Scholar
Lefevre E., Farlay D., Barla Y., Subtil F., Wolfram U., Rizzo S., Baron C., Zysset P., Pithioux M., Follet H., Compositional and mechanical properties of growing cortical bone tissue: a study of the human fibula, Sci. Rep., 2019, 9, DOI: 10.1038/s41598-019-54016-1.Search in Google Scholar
Lefevre E., Baron C., Gineyts E., Bala Y., Gharbi H., Allain J-M., Lasaygues P., Pithioux M., Follet H., Ultrasounds could be considered as a future tool for probing growing bone properties, Sci. Rep., 2020, 10, DOI: 10.1038/s41598-020-72776-z.Search in Google Scholar
Lehmann T.P., Wojtków M., Pruszyńska-Oszmałak E., Kołodziejski P., Pezowicz C., Trzaskowska A., Mielcarek S., Szybowicz M., Nowicka A.B., Nowicki M., Misterska E., Iwańczyk-Skalska E., Jagodziński P., Głowacki M., Trabecular bone remodelling in the femur of C57BL/6J mice treated with diclofenac in combination with treadmill exercise, Acta Bioeng. Biomech., 2021, 3, DOI: 10.37190/ABB-01851-2021-01.Search in Google Scholar
Lisowska B., Kosson D., Domaracka K., Positives and negatives of nonsteroidal anti-inflammatory drugs in bone healing: the effects of these drugs on bone repair, Drug Design, Development and Therapy, 2018, 12, DOI: 10.2147/DDDT.S164565.Search in Google Scholar
Mardas M., Kubisz L., Biskupski P., Mielcarek S., Stelmach-Mardas M., Kałuska I., Radiation sterilized bone response to dynamic loading, Mat. Sci. Eng. C., 2012, 32, DOI: 10.1016/j.msec.2012.04.041.Search in Google Scholar
Menard K.P., Dynamic Mechanical Analysis: A Practical Introduction, CRC Press, 1999.Search in Google Scholar
Moilanen P., Nicholson P.H.F., Kilappa V., Cheng S., Timonen J., Assessment of the cortical bone thickness using ultrasonic guided waves: Modelling and in vitro study, Ultr. Med. Biol., 2007, 33, DOI: 10.1016/j.ultrasmedbio.2006.07.038.Search in Google Scholar
Pountos I., Georgouli T., Calori G.M., Giannoudis P.V., Do nonsteroidal anti-inflammatory drugs affect bone healing? A critical analysis, Sci. World J., 2012, 2012, DOI: 10.1100/2012/606404.Search in Google Scholar
Ramirez-Garcia-Luna J., Wong T.H., Chan D., Al-Saran Y., Awlia A., Abou-Rjeili M., Ouellet S., Akoury E., Lemerie C.A., Henderson J.E., Martineau P.A., Deffective bone repair in diclofenac treated C57B16 mice with and without lipopolysaccharide induced systemic inflammation, J. Cell. Physiol., 2018, 1–10, DOI: 10.1002/jcp.27128.Search in Google Scholar
Schriefer J.L., Robling A.G., Warden S.J., Fournier A.J., Mason J.J., Turner C.H., A comparison of mechanical properties derived from multiple skeletal sites in mice, J. Biomech., 2005, 38, DOI: 10.1016/j.jbiomech.2004.04.020.Search in Google Scholar
Shimamura C.H., Iwamoto J., Takeda T., Ichimura S., Abe H., Toyame Y., Effect of decreased physical activity on bone mass in exercise-trained young rats, J. Orth. Sci., 2002, 7, DOI: 10.1007/s007760200060.Search in Google Scholar
Torcasio A., van Oosterwyck, H., van Lenthe G.H., The systematic errors in tissue modulus of murine bones when estimated from three-point bending, J. Biomech., 2008, 41, DOI: 10.1016/S0021-9290(08)70014-9.Search in Google Scholar
Trębacz H., Wojtowicz K., Thermal stabilization of collagen molecules in bone tissue, Int. J. Biol. Macrom., 2005, 37, DOI: 10.1016/j.ijbiomac.2005.04.007.Search in Google Scholar
Turner C.H., Burr D.B., Basic biomechanical measurements of bone: a tutorial, Bone, 1993, 14, DOI: 10.1016/8756-3282(93)90081-k.Search in Google Scholar
Wallace J.M., Rajachar R.M., Allen M.R., Bloomfield S.A., Robey P.G., Young M.F., Kohn D.H., Exercise-induced changes in the cortical bone of growing mice are bone- and gender-specific, Bone, 2007, 40, DOI: 10.1016/j.bone.2006.12.002.Search in Google Scholar
Von Euw S., Wang Y., Laurent G., Drouet Ch., Babonneau F., Nassif N., Azais T., Bone mineral: new insights into its chemical composition, Sci. Rep., 2019, 9, DOI: 10.1038/s41598-019-44620-6.Search in Google Scholar
Yamashita J., Li, X., Furman B.R., Rawls H.R., Wang X., Agrawal C.M., Collagen and bone viscoelasticity: a dynamic mechanical analysis, J. Biomed. Mat. Res., 2002, 63, DOI: 10.1002/jbm.10086.Search in Google Scholar