Acceso abierto

Mechanical properties of the mouse femur after treatment with diclofenac and running exercises

, , , ,  y   
22 jul 2022

Cite
Descargar portada

Bissinger O., Kreutzer K., Gotz C., Hapfelmeier A., Pautke Ch., Vogt S., Wexel G., Wolff K.-D., Tischer T., Prodinger P.M., A biomechanical, micro-computertomographic and histological analysis of the influence of diclofenac and prednisolone on fracture healing in vivo, BMC Musc. Dis., 2016, 17, DOI: 10.1186/s12891-016-1241-2. Search in Google Scholar

Bochud N., Vallet Q., Minonzio J.-G., Laugier P., Predicting bone strength with ultrasonic guided waves, Sci. Rep., 2017, 7, DOI: 10.1038/srep43628. Search in Google Scholar

Bowman S.M., Gibson L.J., Hayes, W.C., McMahon T.A., Results from demineralized bone creep tests suggest that collagen is responsible for the creep behavior of bone, J. Biomech. Eng., 1999, 121, DOI: 10.1115/1.2835112. Search in Google Scholar

Burstein A.H., Zika J.M., Heiple K.G., Klein L., Contribution of collagen and mineral to the elastic-plastic properties of bone, JBJS, 1975, 57, 956–961. Search in Google Scholar

Capanema N.S.V., Mansur A.A.P., Carvalho S.M., Silva A.R.P., Ciminelli V.S., Mansur H.S., Niobium-Doped Hydroxyapatite Bioceramics: Synthesis, Characterization and In Vitro Cytocompatibility, Materials, 2015, 8, DOI: 10.3390/ma8074191. Search in Google Scholar

Cottrell J., O’Connor J.P., Effect of Non-Steroidal Anti-Inflammatory Drugs on Bone Healing, Pharmac., 2010, 3, DOI: 10.3390/ph3051668. Search in Google Scholar

Currey J.D., The design of mineralized hard tissues for their mechanical functions, J. Exp. Biol., 1999, 202, DOI: 10.1242/jeb.202.23.3285. Search in Google Scholar

Currey J.D., What determines the bending strength of compact bone?, J. Exp. Biol., 1999, 202, DOI: 10.1242/jeb.202.18.2495. Search in Google Scholar

Dobrzyńnski M., Pezowicz C., Tomanik M., Kuropka P., Dudek K., Fita K., Styczyńska M., Wiglusz R.J., Modulating effect of selected pharmaceuticals on bone in female rats exposed to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD), RSC Advances, 2018, 8 (48), DOI: 10.1039/C8RA03619E. Search in Google Scholar

Donnelly E., Williams R.M., Downs S.A., Dickinson M.E., Quasistatic and dynamic nanomechanical properties of cancellous bone tissue relate to collagen content and organization, J. Mater. Res., 2006, 21, DOI: 10.1557/jmr.2006.0259. Search in Google Scholar

Drouet Ch., Aufray M., Rollin-Martinet S., Vandecandelaere N., Grossin D., Rossignol F., Champion E., Navrotsky A., Rey Ch., Nanocrystalline apatites: The fundamental role of water, Am. Min., 2018, 103, DOI: 10.2138/am-2018-6415. Search in Google Scholar

Ellingham S.T.D., Thompson T.J.U., Islam M., Thermogravimetric analysis of property changes and weight loss in incinerated bone, Pal. Pal. Pal., 2015, 438, DOI: 10.1016/j.paleo.2015.08.009. Search in Google Scholar

Förstera Y., Schulze S., Penk A., Neuber Ch., Moler S., Hintze V., Scharnweber D., Schnabelrauch M., Pietzsch J., Huster D., Rammelt S., The influence of different artificial extracellular matrix implant coatings on the regeneration of a critical size femur defect in rats, Mater. Sci. Eng. C., 2020, 116, DOI: 10.1016/j.msec.2020.111157. Search in Google Scholar

Gardinier J.D., Rostami N., Lauren J., Zhang C., Bone adaptation in response to treadmill exercise in young and adult mice, Bone Rep., 2018, 8, DOI: 10.1016/j.bonr.2018.01.003. Search in Google Scholar

Garner E., Lakes R., Lee T., Swan, C., Brand R., Viscoelastic dissipation in compact bone: Implications for stress-induced fluid flow in bone, J. Biom. Eng., 2000, 122, DOI: 10.1115/1.429638. Search in Google Scholar

Gauza-Włodarczyk M., Kubisz L., Mielcarek S., Włodarczyk D., Comparison of the thermal properties of fish collagen and bovine collagen in the temperature range 298–670 K, Mater. Sci. Eng. C., 2017, 80, DOI: 10.1016/j.msec.2017.06.012. Search in Google Scholar

Górecka Ż., Idaszek J., Kołbuk D., Choińska E., Chlanda A., Święszkowski W., The effect of diameter of fibre on formation of hydrogen bonds and mechanical properties of 3Dprinted PCL, Mater. Sci. Eng. C., 2020, 114, DOI: 10.1016/j.msec.2020.111072. Search in Google Scholar

Hoehne G., Hemminger W., Flammersheim H.-J., Differential Scanning Calorimetry, Springer-Verlag, Berlin, 1996 Search in Google Scholar

Iwamoto J., Shimamura Ch., Takeda T., Abe H., Ichimura S., Sato Y., Toyama Y., Effects of treadmill exercise on bone mass, bone metabolism and calciotropic hormones in young growing rats, JBMM, 2004, 22, DOI: 10.1007/s00774-003-0443-5. Search in Google Scholar

Jamsa T., Jalovaara P., Peng Z., Vaananen H.K., Tuukkanen J., Comparison of three-point bending test and peripheral quantitative computed tomography analysis in the evaluation of the strength of mouse femur and tibia, Bone, 1998, 23, DOI: 10.1016/s8756-3282(98)00076-3. Search in Google Scholar

Jepsen K.J., Silva M.J., Vashishth D., Guo X.E., van der Meulen M.Ch., Establishing Biomechanical Mechanisms in Mouse Model: Practical Guidelines for Systematically Evaluating Phenotypic Changes in the Diaphyses of Long Bones, JBMR, 2015, 30, DOI: 10.1002/jbmr.2539. Search in Google Scholar

Kodama Y., Umemura Y., Nagasawa S., Beamer W.G., Donahue L.R., Rosen C.R., Baylink D.J., Farley J.R., Exercise and mechanical loading increase periosteal bone formation and whole bone strength in C57BL/6J mice but not in C3H/Hej mice, Cal. Tiss. Inter., 2000, 66, DOI: 10.1007/s002230010060. Search in Google Scholar

Landis W.J., The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix, Bone, 1995, 16, DOI: 10.1016/8756-3282(95)00076-p. Search in Google Scholar

Lefevre E., Farlay D., Barla Y., Subtil F., Wolfram U., Rizzo S., Baron C., Zysset P., Pithioux M., Follet H., Compositional and mechanical properties of growing cortical bone tissue: a study of the human fibula, Sci. Rep., 2019, 9, DOI: 10.1038/s41598-019-54016-1. Search in Google Scholar

Lefevre E., Baron C., Gineyts E., Bala Y., Gharbi H., Allain J-M., Lasaygues P., Pithioux M., Follet H., Ultrasounds could be considered as a future tool for probing growing bone properties, Sci. Rep., 2020, 10, DOI: 10.1038/s41598-020-72776-z. Search in Google Scholar

Lehmann T.P., Wojtków M., Pruszyńska-Oszmałak E., Kołodziejski P., Pezowicz C., Trzaskowska A., Mielcarek S., Szybowicz M., Nowicka A.B., Nowicki M., Misterska E., Iwańczyk-Skalska E., Jagodziński P., Głowacki M., Trabecular bone remodelling in the femur of C57BL/6J mice treated with diclofenac in combination with treadmill exercise, Acta Bioeng. Biomech., 2021, 3, DOI: 10.37190/ABB-01851-2021-01. Search in Google Scholar

Lisowska B., Kosson D., Domaracka K., Positives and negatives of nonsteroidal anti-inflammatory drugs in bone healing: the effects of these drugs on bone repair, Drug Design, Development and Therapy, 2018, 12, DOI: 10.2147/DDDT.S164565. Search in Google Scholar

Mardas M., Kubisz L., Biskupski P., Mielcarek S., Stelmach-Mardas M., Kałuska I., Radiation sterilized bone response to dynamic loading, Mat. Sci. Eng. C., 2012, 32, DOI: 10.1016/j.msec.2012.04.041. Search in Google Scholar

Menard K.P., Dynamic Mechanical Analysis: A Practical Introduction, CRC Press, 1999. Search in Google Scholar

Moilanen P., Nicholson P.H.F., Kilappa V., Cheng S., Timonen J., Assessment of the cortical bone thickness using ultrasonic guided waves: Modelling and in vitro study, Ultr. Med. Biol., 2007, 33, DOI: 10.1016/j.ultrasmedbio.2006.07.038. Search in Google Scholar

Pountos I., Georgouli T., Calori G.M., Giannoudis P.V., Do nonsteroidal anti-inflammatory drugs affect bone healing? A critical analysis, Sci. World J., 2012, 2012, DOI: 10.1100/2012/606404. Search in Google Scholar

Ramirez-Garcia-Luna J., Wong T.H., Chan D., Al-Saran Y., Awlia A., Abou-Rjeili M., Ouellet S., Akoury E., Lemerie C.A., Henderson J.E., Martineau P.A., Deffective bone repair in diclofenac treated C57B16 mice with and without lipopolysaccharide induced systemic inflammation, J. Cell. Physiol., 2018, 1–10, DOI: 10.1002/jcp.27128. Search in Google Scholar

Schriefer J.L., Robling A.G., Warden S.J., Fournier A.J., Mason J.J., Turner C.H., A comparison of mechanical properties derived from multiple skeletal sites in mice, J. Biomech., 2005, 38, DOI: 10.1016/j.jbiomech.2004.04.020. Search in Google Scholar

Shimamura C.H., Iwamoto J., Takeda T., Ichimura S., Abe H., Toyame Y., Effect of decreased physical activity on bone mass in exercise-trained young rats, J. Orth. Sci., 2002, 7, DOI: 10.1007/s007760200060. Search in Google Scholar

Torcasio A., van Oosterwyck, H., van Lenthe G.H., The systematic errors in tissue modulus of murine bones when estimated from three-point bending, J. Biomech., 2008, 41, DOI: 10.1016/S0021-9290(08)70014-9. Search in Google Scholar

Trębacz H., Wojtowicz K., Thermal stabilization of collagen molecules in bone tissue, Int. J. Biol. Macrom., 2005, 37, DOI: 10.1016/j.ijbiomac.2005.04.007. Search in Google Scholar

Turner C.H., Burr D.B., Basic biomechanical measurements of bone: a tutorial, Bone, 1993, 14, DOI: 10.1016/8756-3282(93)90081-k. Search in Google Scholar

Wallace J.M., Rajachar R.M., Allen M.R., Bloomfield S.A., Robey P.G., Young M.F., Kohn D.H., Exercise-induced changes in the cortical bone of growing mice are bone- and gender-specific, Bone, 2007, 40, DOI: 10.1016/j.bone.2006.12.002. Search in Google Scholar

Von Euw S., Wang Y., Laurent G., Drouet Ch., Babonneau F., Nassif N., Azais T., Bone mineral: new insights into its chemical composition, Sci. Rep., 2019, 9, DOI: 10.1038/s41598-019-44620-6. Search in Google Scholar

Yamashita J., Li, X., Furman B.R., Rawls H.R., Wang X., Agrawal C.M., Collagen and bone viscoelasticity: a dynamic mechanical analysis, J. Biomed. Mat. Res., 2002, 63, DOI: 10.1002/jbm.10086. Search in Google Scholar