This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Abbas S.S., Nasif M.S., Al-Waked R., Said M.A.M., Numerical investigation on the effect of bileaflet mechanical heart valve’s implantation tilting angle and aortic root geometry on intermittent regurgitation and platelet activation, Artif. Organs, 2020, 44 (2), E20–E39.Search in Google Scholar
Ali A., Kazmi R., High performance simulation of blood flow pattern and transportation of magnetic nanoparticles in capillaries, Intell. Technol. Appl., 2020, 1198, 222–236.Search in Google Scholar
Amindari A., Kirkköprü K., Saltik İL., Sünbüloğlu E., Effect of non-linear leaflet material properties on aortic valve dynamics – A coupled fluid-structure approach, Eng. Solid. Mech., 2021, 9 (2), 123–136.Search in Google Scholar
Amindari A., Saltik L., Kirkkopru K., Yacoub M., Yalcin H.C., Assessment of calcified aortic valve leaflet deformations and blood flow dynamics using fluid-structure interaction modeling, Inform. Med. Unlocked, 2017, 9, 191–199.Search in Google Scholar
Bailoor S., Seo J.-H., Dasi L., Schena S., Mittal R., A computational study of the hemodynamics of bioprosthetic aortic valves with reduced leaflet motion, J. Biomech., 2021, 120 (21), 110350.Search in Google Scholar
Belkhiri K., Boumeddane B., A Cartesian grid generation technique for 2-D non-Newtonian blood flow through a bileaflet mechanical heart valve, Int. J. Comput. Methods Eng., 2021, 22 (4), 297–315.Search in Google Scholar
Bruecker C., Li Q., Possible early generation of physiological helical flow could benefit the triflo trileaflet heart valve prosthesis compared to bileaflet valves, Bioeng., 2020, 7 (4), 1–16.Search in Google Scholar
Carrel T., Dembitsky W.P., de Mol B., Obrist D., Dreyfus G., Meuris B., Vennemann B., Lapeyre D., Schaff H., Non-physiologic closing of bi-leaflet mechanical heart prostheses requires a new tri-leaflet valve design, Int. J. Cardiol., 2020, 304, 125–127.Search in Google Scholar
Claiborne T.E., Xenos M., Sheriff J., Chiu W-C., Soares J., Alemu Y., Gupta S., Judex S., Slepian M.J., Bluestein D., Towards optimization of a novel trileaflet polymeric prosthetic heart valve via device thrombogenicity emulation (DTE), ASAIO, 2013, 59 (3), 275–283.Search in Google Scholar
Dijkman P.E., Fioretta E.S., Frese L., Pasqualini F.S., Hoerstrup S.P., Heart valve replacements with regenerative capacity, Transfus. Med. Hemoth., 2016, 43 (4), 282–290.Search in Google Scholar
Fries R., Graeter T., Aicher D., Reul H., Schmitz C., Böhm M., Schäfers H.J., In vitro comparison of aortic valve movement after valve-preserving aortic replacement, J. Thorac. Cardiovasc. Surg., 2006, 132 (1), 32–37.Search in Google Scholar
Ge L., Dasi L.P., Sotiropoulos F., Yoganathan A.P., Characterization of hemodynamic forces induced by mechanical heart valves: Reynolds vs. Viscous Stresses, Ann. Biomed. Eng., 2008, 36 (2), 276–297.Search in Google Scholar
Gilmanov A., Sotiropoulos F., Comparative hemodynamics in an aorta with bicuspid and trileaflet valves, Theor. Comput. Fluid Dyn., 2016, 30, 67–85.Search in Google Scholar
Hanafizadeh P., Mirkhani N., Davoudi M.R., Masouminia M., Sadeghy K., Non-Newtonian blood flow simulation of diastolic phase in bileaflet mechanical heart valve implanted in a realistic aortic root containing coronary arteries, Artif. Organs, 2016, 40 (10), E179–E191.Search in Google Scholar
Hui S., Mahmood F., Matyal R., Aortic valve area-technical communication: continuity and Gorlin equations revisited, J. Cardiothorac. Vasc. Anesth., 2018, 32 (6), 2599–2606.Search in Google Scholar
Kim W., Choi H., Kweon J., Yang D.H., Kim Y.-H., Effects of pannus formation on the flow around a bileaflet mechanical heart valve, PLoS ONE, 2020, 15 (6), e0234341.Search in Google Scholar
Kuan Y.H., Kabinejadian F., Nguyen V.-T., Su B., Yoganathan A.P., Leo H.L., Comparison of hinge microflow fields of bileaflet mechanical heart valves implanted in different sinus shape and downstream geometry, Comput. Methods in Biomech. Biomed. Engin., 2015, 18 (16), 1785–1796.Search in Google Scholar
Kuan Y.H., Nguyen V.-T., Kabinejadian F., Leo H.L., Computational hemodynamic investigation of bileaflet and trileaflet mechanical heart valves, J. Heart Valve Dis., 2015, 24 (3), 393–403.Search in Google Scholar
Kwon Y.J., Numerical analysis for the structural strength comparison of St. Jude Medical and Edwards MIRA bileaflet mechanical heart valve prostheses, J. Mech. Sci. Technol., 2010, 24 (2), 461–469.Search in Google Scholar
Li C.-P., Chen S.-F., Lo C.-W., Lu P.-C., Turbulence characteristics downstream of a new trileaflet mechanical heart valve, Biomed. Eng., 2011, 57 (3), 188–196.Search in Google Scholar
[21] Mao W., Caballero A., McKay R., Primiano C., Sun W., Fully-coupled fluid-structure interaction simulation of the aortic and mitral valves in a realistic 3D left ventricle model, PLoS ONE, 2017, 12 (9), e0184729.Search in Google Scholar
Mazzitelli R., Boyle F., Murphy E., Renzulli A., Fragomeni G., Numerical prediction of the effect of aortic Left Ventricular Assist Device outflow-graft anastomosis location, Biocybern. Biomed. Eng., 2016, 36 (2), 327–343.Search in Google Scholar
Nasif M.S., Kadhim S.K., Al-Kayiem H.H., Al-Waked R., Using one way fluid structure interaction coupling to investigate the effect of blood flow on the bileaflet mechanical heart valve structure, ARPN J. Eng. Appl. Sci., 2016, 11 (20), 11971–11974.Search in Google Scholar
Piatti F., Sturla F., Marom G., Sheriff J., Claiborne T.E., Slepian M.J., Redaelli A., Bluestein D., Hemodynamic and thrombogenic analysis of a trileaflet polymeric valve using a fluid–structure interaction approach, J. Biomech., 2015, 48 (13), 3641–3649.Search in Google Scholar
Qian J.-Y., Gao Z.-X., Li W.-Q., Jin Z.-J., Cavitation suppression of bileaflet mechanical heart valves, Cardiovasc. Eng. Technol., 2020, 11, 783–794.Search in Google Scholar
Sampaio Rodrigues L.T., Silva L.C., Machado L.C., Greco M., Gelape C.L., Simulations of artificial biological heart valves with ANSYS, Esss Comput. Model. Chall., 2016, 10.13140/RG.2.1.3146.7925.Search in Google Scholar
Sari M., Bayram Z., Ayturk M., Bayam E., Kalkan S., Guner A., Kalcik M., Gursoy M.O., Gunduz S., Ozkan M., Characteristic localization patterns of thrombus on various brands of bileaflet mitral mechanical heart valves as assessed by three-dimensional transesophageal echocardiography and their relationship with thromboembolism, Int. J. Card. Imaging, 2021, 37 (9), 2691–2705.Search in Google Scholar
Schaller T., Scharfschwerdt M., Schubert K., Prinz C., Lembke U., Sievers H.-H., Aortic valve replacement in sheep with a novel trileaflet mechanical heart valve prosthesis without anticoagulation, J. Thorac. Cardiovasc. Surg., 2021, 7, 76-88.Search in Google Scholar
Shibeshi S.S., Vollins W.E., The rheology of blood flow in a branched arterial system, Appl. Rheol., 2005, 15 (6), 398–405.Search in Google Scholar
Sievers H.H., Schubert K., Jamali A., Scharfschwerdt M., The influence of different inflow configurations on computational fluid dynamics in a novel three-leaflet mechanical heart valve prosthesis, Interact. Cardiovasc. Thorac. Surg., 2018, 27 (4), 475–480.Search in Google Scholar
Smadi O., Hassan I., Pibarot P., Kadem L., Numerical and experimental investigations of pulsatile blood flow pattern through a dysfunctional mechanical heart valve, J. Biomech., 2010, 43 (8), 1565–1572.Search in Google Scholar
Sundström E., Jonnagiri R., Gutmark-Little I., Gutmark E., Critser P., Taylor M.D., Tretter J.T., Hemodynamics and tissue biomechanics of the thoracic aorta with a trileaflet aortic valve at different phases of valve opening, Int. J. Numer. Method. Biomed. Eng., 2020, 36 (7), 1–14.Search in Google Scholar
Tyfa Z., Obidowski D., Reorowicz P., Stefańczyk L., Fortuniak J., Jóźwik K., Numerical simulations of the pulsatile blood flow in the different types of arterial fenestrations: Comparable analysis of multiple vascular geometries, Biocybern. Biomed. Eng., 2018, 38 (2), 228–242.Search in Google Scholar
Xu X., Liu T., Li C., Zhu L., Li S., A numerical analysis of pressure pulsation characteristics induced by unsteady blood flow in a bileaflet mechanical heart valve, Processes, 2019, 7 (4), 232.Search in Google Scholar
Yun B.M., Wu J., Simon H.A., Arjunon S., Sotiropoulos F., Aidun C.K., Yoganathan A.P., A numerical investigation of blood damage in the hinge area of aortic bileaflet mechanical heart valves during the leakage phase, Ann. Biomed. Eng., 2012, 40 (7), 1468–1485.Search in Google Scholar