Acceso abierto

Augmented reality visualization for aiding biopsy procedure according to computed tomography based virtual plan

, , ,  y   
02 may 2021

Cite
Descargar portada

Andrews C.M., Henry A.B., Soriano I.M., Southworth M.K., Silva J.R., Registration Techniques for Clinical Applications of Three-Dimensional Augmented Reality Devices, IEEE Journal of Translational Engineering in Health and Medicine, 2020, 9, DOI: https://doi.org/10.1109/JTEHM.2020.3045642. Search in Google Scholar

Badiali G., Cutolo F., Cercenelli L., M. Carbone M., D’Amato R., Ferrari V., Marchetti C., The VOSTARS project: A new wearable hybrid video and optical see-through augmented reality surgical system for maxillofacial surgery, Int. J. Maxillofacial Surg., 2019, 48, DOI: https://doi.org/10.1016/j.ijom.2019.03.472. Search in Google Scholar

Badiali G. et al., Review on Augmented Reality in Oral and Cranio-Maxillofacial Surgery: Toward “Surgery-Specific” Head-Up Displays, IEEE Access, 2020, 8, 59015–59028, DOI: 10.1109/ACCESS.2020.2973298. Search in Google Scholar

Bosc R., Fitoussi A., Hersant B., Dao T.H., Meningaud J.P, Intraoperative augmented reality with heads-up displays in maxillofacial surgery: A systematic review of the literature and a classification of relevant technologies, Int. J. Oral Maxillofacial Surg., 2019, 48 (1), 132–139, DOI: 10.1016/j.ijom.2018.09.010. Search in Google Scholar

Carse B., Meadows B., Bowers R., Rowe P., Affordable clinical gait analysis: An assessment of the marker tracking accuracy of a new low-cost optical 3d motion analysis system, Physiotherapy, 2013, 99 (4), 347–351. Search in Google Scholar

Chen X., Xu L., Wang Y., Wang H., Wang F., Zeng X., Wang Q., Egger J., Development of a surgical navigation system based on augmented reality using an optical see-through headmounted display, Journal of Biomedical Informatics, 2015, 55, DOI: https://doi.org/10.1016/j.jbi.2015.04.003. Search in Google Scholar

Cutolo F. et al., Ambiguity-Free Optical–Inertial Tracking for Augmented Reality Headsets, Sensors, 2020, 20 (5), DOI: 10.3390/s20051444. Search in Google Scholar

De Amici S., Sanna A., Lamberti F., Pralio B., A wii remote-based infrared-optical tracking system, Entertainment Computing, 2010, 1 (3–4), 119. Search in Google Scholar

Garrido-Jurado S., Munoz-Salinas R., Madrid-Cuevas F., Marin-Jimenez M., Automatic generation and detection of highly reliable fiducial markers under occlusion, Pattern Recognition, 2014, 47 (6), 2280–2292. Search in Google Scholar

García-Vázquez V., Von Haxthausen F., Jäckle S., Schumann C., Kuhlemann I., Bouchagiar J., Höfer A.C., Matysiak F., Hüttmann G., Goltz J.P., Kleemann M., Ernst F., Horn M., Navigation and visualization with Holo-Lens in endovascular aortic repair, Innov. Surg. Sci., 2018, 3 (3), 167–177, DOI: 10.1515/iss-2018-2001. Search in Google Scholar

Gil J.J., Díaz I., Accini F., Inferring material properties in robotic bone drilling processes, Acta Bioeng. Biomech., 2019, 21 (3), 109–118, DOI: 10.5277/ABB-01386-2019-02. Search in Google Scholar

Grubert J., Itoh Y., Moser K., Swan J.E., A Survey of Calibration Methods for Optical See-Through Head-Mounted Displays, IEEE Transactions on Visualization and Computer Graphics, 2018, 24 (9), 2649–2662, DOI: 10.1109/TVCG.2017.2754257. Search in Google Scholar

Itoh Y., Klinker G., Interaction-free calibration for optical seethrough head-mounted displays based on 3D eye localization, Proc. IEEE Symp. 3D User Interfaces, 2014, 75–82. Search in Google Scholar

Kunz C., Genten V., Meißner P., Hein B., Metric-based evaluation of fiducial markers for medical procedures, Proc. SPIE 10951, Medical Imaging 2019: Image-Guided Procedures, Robotic Interventions, and Modeling, 109512O, 2019, DOI: https://doi.org/10.1117/12.2511720. Search in Google Scholar

Lin M.A., Siu A.F., Bae J.H., Cutkosky M.R., Daniel B.L., HoloNeedle: Augmented reality guidance system for needle placement investigating the advantages of three-dimensional needle shape reconstruction, IEEE Robot. Autom. Lett., 2018, 3 (4), 4156–4162, DOI: 10.1109/LRA.2018.2863381 Search in Google Scholar

Majak M., Żuk M., Świątek-Najwer E., Popek M., Pietruski P., Biopsy procedure applied in MentorEye molecular surgical navigation system, Lecture Notes in Computational Vision and Biomechanics, 2018, 27, 338–344. Search in Google Scholar

Makibuchi N., Kato H., Yoneyama A., Vision-based robust calibration for optical see-through head-mounted displays, Proc. IEEE Int. Conf. Image Process., 2013, 2177–2181. Search in Google Scholar

Mcknight R.R., Pean C.A., Buck J.S. et al., Virtual Reality and Augmented Reality – Translating Surgical Training into Surgical Technique, Curr. Rev. Musculoskelet. Med., 2020, 13, 663–674, https://doi.org/10.1007/s12178-020-09667-3 Search in Google Scholar

De Oliveira M.E., Debarba H.G., Lädermann A., Chagué S., Charbonnier C., A hand-eye calibration method for augmented reality applied to computer-assisted orthopedic surgery, Int. J. Med. Robot., 2019, 15 (2), DOI: 10.1002/rcs.1969. Search in Google Scholar

Pietruski P., Majak M., Świątek-Najwer E., Żuk M., Popek M., Mazurek M., Świecka M., Jaworowski J., Navigation-guided fibula free flap for mandibular reconstruction: A proof of concept study, Journal of Plastic, Reconstructive and Aesthetic Surgery, 2019, 72 (4), DOI: 10.1016/j.bjps.2019.01.026. Search in Google Scholar

Pietruski P., Majak M., Świątek-Najwer E., Żuk M., Popek M., Jaworowski J., Mazurek M., Supporting fibula free flap harvest with augmented reality: A proof-of-concept study, The Laryngoscope, 2019, 130 (5), 1173–1179, https://doi.org/10.1002/lary.28090 Search in Google Scholar

Pietruski P. et. al., Supporting mandibular resection with intraoperative navigation utilizing augmented reality technology – A proof of concept study, Journal of Cranio-Maxillofacial Surgery, 2019, 47 (6), DOI: https://doi.org/10.1016/j.jcms.2019.03.004. Search in Google Scholar

Qian L., Barthel A., Johnson A., Osgood G., Kazanzides P., Navab N., Fuerst B., Comparison of optical see-through head-mounted displays for surgical interventions with objectanchored 2D-display, Int. J. Comput. Assist. Radiol. Surg., 2017, 12 (6), DOI: 10.1007/s11548-017-1564-y. Search in Google Scholar

Rahman R., Wood M.E., Qian L., Price C.L., Johnson A.A., Osgood G.M., Head-Mounted Display Use in Surgery: A Systematic Review, Surgical Innovation, 2020, 27 (1), 88–100, DOI: 10.1177/1553350619871787. Search in Google Scholar

Sakai D., Joyce K., Sugimoto M. et al., Augmented, virtual and mixed reality in spinal surgery: A real-world experience, Journal of Orthopaedic Surgery, 2020, DOI: 10.1177/2309499020952698. Search in Google Scholar

Tuceryan M., Genc Y., Navab N., Single-Point Active Alignment Method (SPAAM) for Optical See-Through HMD Calibration for Augmented Reality, Teleoperators and Virtual Environments, 2002, 11, 259–276. Search in Google Scholar

Wacker F.K., Vogt S.K., Khamene A., Jesberger J.A., Nour S.G., Elgort D.R., Sauer F., Duerk J.L., Lewin J.S., An augmented reality system for MR image-guided needle biopsy: initial results in a swine model, Radiology, 2006, 238 (2), 497–504. Search in Google Scholar

Wang H., Wang F., Xu L., Chen X., Wang Q., Precision insertion of percutaneous sacroiliac screws using a novel augmented reality-based navigation system: a pilot study, International Orthopaedics, 2016, 40, 1941–1947. Search in Google Scholar

Wang J., Shen Y., Yang S., A practical marker-less image registration method for augmented reality oral and maxillofacial surgery, Int. J. Comput. Assist. Radiol. Surg., 2019, 14 (5), 763–773, DOI: 10.1007/s11548-019-01921-5. Search in Google Scholar

Żuk M., Majak M., Świątek-Najwer E., Popek M., Kulas Z., Evaluation of calibration procedure for stereoscopic visualization using optical See-Through Head Mounted Displays for a complex oncological treatment, Lecture Notes in Computational Vision and Biomechanics, 2018, 27, 354–359. Search in Google Scholar