Acceso abierto

Distributed Model Reference Control for Synchronization of a Vehicle Platoon with Limited Output Information and Subject to Periodical Intermittent Information


Cite

Abou Harfouch, Y., Yuan, S. and Baldi, S. (2017). An adaptive switched control approach to heterogeneous platooning with intervehicle communication losses, IEEE Transactions on Control of Network Systems 5(3): 1434–1444, DOI: 10.1109/TCNS.2017.2718359.Search in Google Scholar

Besselink, B. and Johansson, K.H. (2017). String stability and a delay-based spacing policy for vehicle platoons subject to disturbances, IEEE Transactions on Automatic Control 62(9): 4376–4391, DOI: 10.1109/TAC.2017.2682421.Search in Google Scholar

Cavazza, B.H., Gandia, R.M., Antonialli, F., Zambalde, A.L., Nicolaï, I., Sugano, J.Y. and Neto, A. D.M. (2019). Management and business of autonomous vehicles: A systematic integrative bibliographic review, International Journal of Automotive Technology and Management 19(1-2): 31–54, DOI: 10.1504/IJATM.2019.098509.Search in Google Scholar

Chang, B.-J., Hwang, R.-H., Tsai, Y.-L., Yu, B.-H. and Liang, Y.-H. (2019). Cooperative adaptive driving for platooning autonomous self driving based on edge computing, International Journal of Applied Mathematics and Computer Science 29(2): 213–225, DOI: 10.2478/amcs-2019-0016.Search in Google Scholar

Di Bernardo, M., Salvi, A. and Santini, S. (2014). Distributed consensus strategy for platooning of vehicles in the presence of time-varying heterogeneous communication delays, IEEE Transactions on Intelligent Transportation Systems 16(1): 102–112, DOI: 10.1109/TITS.2014.2328439.Search in Google Scholar

Franzè, G., Lucia, W. and Tedesco, F. (2018). A distributed model predictive control scheme for leader-follower multi-agent systems, International Journal of Control 91(2): 369–382, DOI: 10.1080/00207179.2017.1282178.Search in Google Scholar

Hamdi, H., Rodrigues, M., Rabaoui, B. and Braiek, N.B. (2021). A fault estimation and fault-tolerant control based sliding mode observer for LPV descriptor systems with time delay, International Journal of Applied Mathematics and Computer Science 31(2): 247–258, DOI: 10.34768/amcs-2021-0017.Search in Google Scholar

Hu, J., Bhowmick, P., Arvin, F., Lanzon, A. and Lennox, B. (2020). Cooperative control of heterogeneous connected vehicle platoons: An adaptive leader-following approach, IEEE Robotics and Automation Letters 5(2): 977–984, DOI: 10.1109/LRA.2020.2966412.Search in Google Scholar

Huang, N., Duan, Z. and Zhao, Y. (2014). Leader-following consensus of second-order non-linear multi-agent systems with directed intermittent communication, IET Control Theory & Applications 8(10): 782–795, DOI: 10.1049/iet-cta.2013.0565.Search in Google Scholar

Huang, N., Duan, Z. and Zhao, Y. (2015). Consensus of multi-agent systems via delayed and intermittent communications, IET Control Theory & Applications 9(1): 62–73, DOI: 10.1049/iet-cta.2014.0729.Search in Google Scholar

Jiang, Y., Zhang, Y. and Wang, S. (2018). Distributed leader-following consensus control based optimal design for multi-agent systems with intermittent communications, 2018 Chinese Control and Decision Conference (CCDC), Shenyang, China, pp. 5341–5345, DOI: 10.1109/CCDC.2018.8408060.Search in Google Scholar

Jond, H.B. and Yildiz, A. (2022). Connected and automated vehicle platoon formation control via differential games, IET Intelligent Transport Systems 17(2): 312–326, DOI: 10.1049/itr2.12260.Search in Google Scholar

Kukurowski, N., Mrugalski, M., Pazera, M. and Witczak, M. (2022). Fault-tolerant tracking control for a non-linear twin-rotor system under ellipsoidal bounding, International Journal of Applied Mathematics and Computer Science 32(2): 171–183, DOI: 10.34768/amcs-2022-0013.Search in Google Scholar

Lewis, F.L., Zhang, H., Hengster-Movric, K. and Das, A. (2013). Cooperative Control of Multi-Agent Systems: Optimal and Adaptive Design Approaches, Springer Science, London, DOI: 10.1007/978-1-4471-5574-4.Search in Google Scholar

Li, S.E., Zheng, Y., Li, K., Wu, Y., Hedrick, J.K., Gao, F. and Zhang, H. (2017). Dynamical modeling and distributed control of connected and automated vehicles: Challenges and opportunities, IEEE Intelligent Transportation Systems Magazine 9(3): 46–58, DOI: 10.1109/MITS.2017.2709781.Search in Google Scholar

Liu, Y., Xie, D. and Shi, L. (2020). Consensus of general linear multi-agent systems with intermittent communications, International Journal of Systems Science 51(12): 2293–2305, DOI: 10.1080/00207721.2020.1793236.Search in Google Scholar

Long, X., Yu, S., Wang, Y. and Jin, L. (2014). Leader-follower consensus of multi-agent system with external disturbance based on integral sliding mode control, Proceedings of the 33rd Chinese Control Conference, Nanjing, China, pp. 1740–1745, DOI: 10.1109/ChiCC.2014.6896891.Search in Google Scholar

Ozkan, M.F. and Ma, Y. (2021). Fuel-economical distributed model predictive control for heavy-duty truck platoon, 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), Indianapolis, USA, pp. 1919–1926.Search in Google Scholar

Prayitno, A. and Nilkhamhang, I. (2021). Distributed model reference adaptive control for vehicle platoons with uncertain dynamics, Engineering Journal 25(8): 173–185, DOI: 10.4186/ej.2021.25.8.173.Search in Google Scholar

Prayitno, A. and Nilkhamhang, I. (2022). Distributed model reference control for cooperative tracking of vehicle platoons subjected to external disturbances and bounded leader input, International Journal of Control, Automation and Systems 20(6): 2067–2080, DOI: 10.1007/s12555-021-0171-4.Search in Google Scholar

Qu, Z. (2009). Cooperative Control of Dynamical Systems: Applications to Autonomous Vehicles, Springer, London, DOI: 10.1007/978-1-84882-325-9.Search in Google Scholar

Song, K., Liu, F., Wang, C., Wang, P. and Min, G. (2020). Driving stability analysis using naturalistic driving data with random matrix theory, IEEE Access 8: 175521–175534.Search in Google Scholar

Wang, F., Liu, Z. and Chen, Z. (2019). Leader-following consensus of second-order nonlinear multi-agent systems with intermittent position measurements, Science China Information Sciences 62(10): 1–16, DOI: 10.1007/s11432-018-9732-7.Search in Google Scholar

Wang, Z., Wu, G. and Barth, M.J. (2017). Developing a distributed consensus-based cooperative adaptive cruise control system for heterogeneous vehicles with predecessor following topology, Journal of Advanced Transportation 2017: 1–16, DOI: 10.1155/2017/1023654.Search in Google Scholar

Wijnbergen, P., Jeeninga, M. and Besselink, B. (2021). Nonlinear spacing policies for vehicle platoons: A geometric approach to decentralized control, Systems & Control Letters 153: 104954, DOI: 10.1016/j.sysconle.2021.104954.Search in Google Scholar

Xie, Y. and Lin, Z. (2020). Global consensus of multi-agent systems with intermittent directed communication in the presence of actuator saturation, International Journal of Robust and Nonlinear Control 30(18): 8469–8484, DOI: 10.1002/rnc.5255.Search in Google Scholar

Xu, C., Xu, H., Su, H. and Liu, C. (2020). Disturbance-observer based consensus of linear multi-agent systems with exogenous disturbance under intermittent communication, Neurocomputing 404: 26–33, DOI: 10.1016/j.neucom.2020.04.051.Search in Google Scholar

Xu, H., Zeng, W. and Xu, C. (2021). Output consensus of multi-agent systems with linear dynamics via asynchronous intermittent control, 2021 40th Chinese Control Conference (CCC), Shanghai, China, pp. 5553–5558, DOI: 10.23919/CCC52363.2021.9549806.Search in Google Scholar

Xu, Z., Zegers, F.M., Wu, B., Dixon, W. and Topcu, U. (2019). Controller synthesis for multi-agent systems with intermittent communication. a metric temporal logic approach, 2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, USA, pp. 1015–1022, DOI: 10.1109/ALLERTON.2019.8919727.Search in Google Scholar

Yan, F., Dridi, M. and El Moudni, A. (2013). An autonomous vehicle sequencing problem at intersections: A genetic algorithm approach, International Journal of Applied Mathematics and Computer Science 23(1): 183–200, DOI: 10.2478/amcs-2013-0015.Search in Google Scholar

Yan, M., Song, J., Yang, P. and Zuo, L. (2018). Neural adaptive sliding-mode control of a bidirectional vehicle platoon with velocity constraints and input saturation, Complexity 2018: 1–11, DOI: 10.1155/2018/1696851.Search in Google Scholar

Zhang, H. and Lewis, F.L. (2012). Adaptive cooperative tracking control of higher-order nonlinear systems with unknown dynamics, Automatica 48(7): 1432–1439, DOI: 10.1016/j.automatica.2012.05.008.Search in Google Scholar

Zhang, H., Lewis, F.L. and Das, A. (2011). Optimal design for synchronization of cooperative systems: State feedback, observer and output feedback, IEEE Transactions on Automatic Control 56(8): 1948–1952, DOI: 10.1109/TAC.2011.2139510.Search in Google Scholar

Zheng, Y., Bian, Y., Li, S. and Li, S.E. (2019). Cooperative control of heterogeneous connected vehicles with directed acyclic interactions, IEEE Intelligent Transportation Systems Magazine 13(2): 127–141, DOI: 10.1109/MITS.2018.2889654.Search in Google Scholar

Zheng, Y., Li, S.E., Li, K., Borrelli, F. and Hedrick, J.K. (2016). Distributed model predictive control for heterogeneous vehicle platoons under unidirectional topologies, IEEE Transactions on Control Systems Technology 25(3): 899–910, DOI: 10.1109/TCST.2016.2594588.Search in Google Scholar

Zheng, Y., Li, S. E., Wang, J., Cao, D. and Li, K. (2015). Stability and scalability of homogeneous vehicular platoon: Study on the influence of information flow topologies, IEEE Transactions on Intelligent Transportation Systems 17(1): 14–26, DOI: 10.1109/TITS.2015.2402153.Search in Google Scholar

eISSN:
2083-8492
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Mathematics, Applied Mathematics