Acceso abierto

On the Analysis of a Mathematical Model of CAR–T Cell Therapy for Glioblastoma: Insights from a Mathematical Model

International Journal of Applied Mathematics and Computer Science's Cover Image
International Journal of Applied Mathematics and Computer Science
Mathematical Modeling in Medical Problems (Special section, pp. 349-428), Urszula Foryś, Katarzyna Rejniak, Barbara Pękala, Agnieszka Bartłomiejczyk (Eds.)

Cite

Anderson, K., Stromnes, I. and Greenberg, P. (2017). Obstacles posed by the tumor microenvironment to T cell activity: A case for synergistic therapies, Cancer Cell 31(3): 311–325. Search in Google Scholar

Bodnar, M. and Piotrowska, M.J. (2016). Stability analysis of the family of tumour angiogenesis models with distributed time delays, Communications in Nonlinear Science and Numerical Simulation 31(1): 124–142. Search in Google Scholar

Bodnar, M., Piotrowska, M.J. and Bogdańska, M.U. (2019). Mathematical analysis of a generalised model of chemotherapy for low grade gliomas, Discrete and Continuous Dynamical Systems B 24(5): 2149–2167, DOI: 10.3934/dcdsb.2019088. Search in Google Scholar

Bodzioch, M., Bajger, P. and Foryś, U. (2021). Angiogenesis and chemotherapy resistance: Optimizing chemotherapy scheduling using mathematical modeling, Journal of Cancer Research and Clinical Oncology 147(8): 2281–2299, DOI: 10.1007/s00432-021-03657-9. Search in Google Scholar

Brown, C.E., Alizadeh, D., Starr, R., Weng, L., Wagner, J.R., Naranjo, A., Ostberg, J.R., Blanchard, M.S., Kilpatrick, J., Simpson, J., Kurien, A., Priceman, S.J., Wang, X., Harshbarger, T.L., D‘Apuzzo, M., Ressler, J.A., Jensen, M.C., Barish, M.E., Chen, M., Portnow, J., Forman, S.J. and Badie, B. (2016). Regression of glioblastoma after chimeric antigen receptor T-cell therapy, New England Journal of Medicine 375(26): 2561–2569, DOI: 10.1056/NEJMoa1610497. Search in Google Scholar

Castellarin, M., Watanabe, K., June, C.H., Kloss, C.C. and Posey, A.D. (2018). Driving cars to the clinic for solid tumors, Gene Therapy 25(3): 165–175, DOI: 10.1038/s41434-018-0007-x. Search in Google Scholar

Colli, P., Gomez, H., Lorenzo, G., Marinoschi, G., Reali, A. and Rocca, E. (2021). Optimal control of cytotoxic and antiangiogenic therapies on prostate cancer growth, Mathematical Models and Methods in Applied Sciences 31(07): 1419–1468, DOI: 10.1142/S0218202521500299. Search in Google Scholar

D’Agostino, M. and Raje, N. (2020). Anti-BCMA CAR T-cell therapy in multiple myeloma: Can we do better?, Leukemia 34(1): 21–34, DOI: 10.1038/s41375-019-0669-4. Search in Google Scholar

de Pillis, L., Gu, W., Fister, K., Head, T., Maples, K., Murugan, A., Neal, T. and Yoshida, K. (2007). Chemotherapy for tumors: An analysis of the dynamics and a study of quadratic and linear optimal controls, Mathematical Biosciences 209(1): 292–315, Search in Google Scholar

D’Errico, G., Machado, H.L. and Sainz Jr., B. (2017). A current perspective on cancer immune therapy: Step-by-step approach to constructing the magic bullet, Clinical and Translational Medicine 6(1): e3, DOI: abs/10.1186/s40169-016-0130-5. Search in Google Scholar

Feins, S., Kong, W., Williams, E.F., Milone, M.C. and Fraietta, J.A. (2019). An introduction to chimeric antigen receptor (car) T-cell immunotherapy for human cancer, American Journal of Hematology 94(S1): S3–S9, DOI: 10.1002/ajh.25418. Search in Google Scholar

Foryś, U. and Marciniak-Czochra, A.K. (2003). Logistic equations in tumour growth modelling, International Journal of Applied Mathematics and Computer Science 13(3): 317–325. Search in Google Scholar

Garcke, H., Lam, K.-F. and Rocca, E. (2018). Optimal control of treatment time in a diffuse interface model of tumor growth, Applied Mathematics & Optimization 78: 495–544, DOI: 10.1007/s00245-017-9414-4. Search in Google Scholar

Ghorashian, S., Kramer, A., Onuoha, S., Wright, G., Bartram, J., Richardson, R., Albon, S.J., Casanovas-Company, J., Castro, F., Popova, B., Villanueva, K., Yeung, J., Vetharoy, W., Guvenel, A., Wawrzyniecka, P.A., Mekkaoui, L., Cheung, G.W.-K., Pinner, D., Chu, J., Lucchini, G., Silva, J., Ciocarlie, O., Lazareva, A., Inglott, S., Gilmour, K.C., Ahsan, G., Ferrari, M., Manzoor, S., Champion, K., Brooks, T., Lopes, A., Hackshaw, A., Farzaneh, F., Chiesa, R., Rao, K., Bonney, D., Samarasinghe, S., Goulden, N., Vora, A., Veys, P., Hough, R., Wynn, R., Pule, M.A. and Amrolia, P.J. (2019). Enhanced car T cell expansion and prolonged persistence in pediatric patients with all treated with a low-affinity cd19 car, Nature Medicine 25(5): 1408–1414. Search in Google Scholar

Hege, K.M., Bergsland, E.K., Fisher, G.A., Nemunaitis, J.J., Warren, R.S., McArthur, J.G., Lin, A.A., Schlom, J., June, C.H. and Sherwin, S.A. (2017). Safety, tumor trafficking and immunogenicity of chimeric antigen receptor (CAR)-T cells specific for TAG-72 in colorectal cancer, Journal for ImmunoTherapy of Cancer 5(1): 22, DOI: 10.1186/s40425-017-0222-9. Search in Google Scholar

Koury, J., Lucero, M., Cato, C., Chang, L., Geiger, J., Henry, D., Hernandez, J., Hung, F., Kaur, P., Teskey, G. and Tran, A. (2018). Immunotherapies: Exploiting the immune system for cancer treatment, Journal of Immunology Research 2018: 9585614, DOI: 10.1155/2018/9585614. Search in Google Scholar

León-Triana, O., Perez-Martinez, A., Ramirez-Orellana, M. and Perez-Garcia, V. (2021). Dual-target CAR-TS with on- and off-tumour activity may override immune suppression in solid cancers: A mathematical proof of concept, Cancers 13(4): 703, DOI: 10.3390/cancers13040703. Search in Google Scholar

Lima, E.A., Wyde, R., Sorace, A.G. and Yankeelov, T.E. (2022). Optimizing delivery of combination targeted and chemotherapy in a murine model of HER2+ breast cancer, Cancer Research 82(12 Supplement): 5050–5050, DOI: 10.1158/1538-7445.AM2022-5050. Search in Google Scholar

Locke, F.L., Ghobadi, A., Jacobson, C.A., Miklos, D.B., Lekakis, L.J., Oluwole, O.O., Lin, Y., Braunschweig, I., Hill, B.T., Timmerman, J.M., Deol, A., Reagan, P.M., Stiff, P., Flinn, I.W., Farooq, U., Goy, A., McSweeney, P.A., Munoz, J., Siddiqi, T., Chavez, J.C., Herrera, A.F., Bartlett, N.L., Wiezorek, J.S., Navale, L., Xue, A., Jiang, Y., Bot, A., Rossi, J.M., Kim, J.J., Go, W.Y. and Neelapu, S.S. (2019). Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): A single-arm, multicentre, phase 1-2 trial, The Lancet Oncology 20(1): 31–42. Search in Google Scholar

Mahlbacher, G.E., Reihmer, K.C. and Frieboes, H.B. (2019). Mathematical modeling of tumor-immune cell interactions, Journal of Theoretical Biology 469: 47–60, DOI: 10.1016/j.jtbi.2019.03.002. Search in Google Scholar

Maude, S.L., Laetsch, T.W., Buechner, J., Rives, S., Boyer, M., Bittencourt, H., Bader, P., Verneris, M.R., Stefanski, H.E., Myers, G.D., Qayed, M., De Moerloose, B., Hiramatsu, H., Schlis, K., Davis, K.L., Martin, P.L., Nemecek, E.R., Yanik, G.A., Peters, C., Baruchel, A., Boissel, N., Mechinaud, F., Balduzzi, A., Krueger, J., June, C. H., Levine, B.L., Wood, P., Taran, T., Leung, M., Mueller, K.T., Zhang, Y., Sen, K., Lebwohl, D., Pulsipher, M.A. and Grupp, S.A. (2018). Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia, New England Journal of Medicine 378(5): 439–448, DOI: 10.1056/NEJMoa1709866. Search in Google Scholar

Miliotou, N.A. and Papadopoulou, C.L. (2018). CAR T-cell therapy: A new era in cancer immunotherapy, Current Pharmaceutical Biotechnology 19(1): 5–18. Search in Google Scholar

Mostolizadeh, R., Afsharnezhad, Z. and Marciniak-Czochra, A. (2018). Mathematical model of chimeric anti-gene receptor (CAR) T cell therapy with presence of cytokine, Numerical Algebra, Control and Optimization 8(1): 63–80. Search in Google Scholar

Pérez-García, V., Calvo, G., Bosque, J., León-Triana, O., Jiménez SĂňchez, J., Pérez Beteta, J., Belmonte-Beitia, J., Valiente, M., Zhu, L., García Gómez, P., Sánchez-Gómez, P., Miguel, E., Hortiguela, R., Azimzade, Y., Molina-García, D., Martínez-Rubio, A., Rojas, A., Ortiz de Mendivil, A., Vallette, F. and Vicente, A. (2020). Universal scaling laws rule explosive growth in human cancers, Nature Physics 16(12): 1–6, DOI: 10.1038/s41567-020-0978-6. Search in Google Scholar

Pérez-García, V.M. and Pérez-Romasanta, L.A. (2015). Extreme protraction for low-grade gliomas: Theoretical proof of concept of a novel therapeutical strategy, Mathematical Medicine and Biology: A Journal of the IMA 33(3): 253–271, DOI: 10.1093/imammb/dqv017. Search in Google Scholar

Pozzi, G., Grammatica, B., Chaabane, L., Catucci, M., Mondino, A., Zunino, P. and Ciarletta, P. (2022). T cell therapy against cancer: A predictive diffuse-interface mathematical model informed by pre-clinical studies, Journal of Theoretical Biology 547: 111172, DOI: 10.1016/j.jtbi.2022.111172. Search in Google Scholar

Radunskaya, A., Kim, R. and Woods, T. (2018). Mathematical modeling of tumor immune interactions: A closer look at the role of a PD-l1 inhibitor in cancer immunotherapy, Spora: A Journal of Biomathematics 4: 25–41, DOI: 10.30707/SPORA4.1Radunskaya. Search in Google Scholar

Sahoo, P., Yang, X., Abler, D., Maestrini, D., Adhikarla, V., Frankhouser, D., Cho, H., Machuca, V., Wang, D., Barish, M., Gutova, M., Branciamore, S., Brown, C.E. and Rockne, R.C. (2020). Mathematical deconvolution of CAR T-cell proliferation and exhaustion from real-time killing assay data, Journal of The Royal Society Interface 17(162): 20190734, DOI: 10.1098/rsif.2019.0734. Search in Google Scholar

Sancho-Araiz, A., Mangas-Sanjuan, V. and Trocóniz, I.F. (2021). The role of mathematical models in immuno-oncology: Challenges and future perspectives, Pharmaceutics 13(7): 1016. Search in Google Scholar

Schuster, S.J., Bishop, M.R., Tam, C.S., Waller, E.K., Borchmann, P., McGuirk, J.P., Jäger, U., Jaglowski, S., Andreadis, C., Westin, J.R., Fleury, I., Bachanova, V., Foley, S.R., Ho, P.J., Mielke, S., Magenau, J.M., Holte, H., Pantano, S., Pacaud, L.B., Awasthi, R., Chu, J., Anak, O., Salles, G. and Maziarz, R.T. (2019). Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma, New England Journal of Medicine 380(1): 45–56, DOI: 10.1056/NEJMoa1804980. Search in Google Scholar

Shah, N.N. and Fry, T.J. (2019). Mechanisms of resistance to CAR T cell therapy, Nature Reviews Clinical Oncology 16(6): 372–385, DOI: 10.1038/s41571-019-0184-6. Search in Google Scholar

Stein, A.M., Grupp, S.A., Levine, J.E., Laetsch, T.W., Pulsipher, M.A., Boyer, M.W., August, K.J., Levine, B.L., Tomassian, L., Shah, S., Leung, M., Huang, P.-H., Awasthi, R., Mueller, K.T., Wood, P.A. and June, C.H. (2019). Tisagenlecleucel model-based cellular kinetic analysis of chimeric antigen receptor-T cells, CPT: Pharmacometrics & Systems Pharmacology 8(5): 285–295, DOI: abs/10.1002/psp4.12388. Search in Google Scholar

Stein, S., Zhao, R., Haeno, H., Vivanco, I. and Michor, F. (2018). Mathematical modeling identifies optimum lapatinib dosing schedules for the treatment of glioblastoma patients, PLOS Computational Biology 14(1): 1–24, DOI: 10.1371/journal.pcbi.1005924. Search in Google Scholar

Stensjoen, A., Solheim, O., Kvistad, K., Haberg, A., Salvesen, O. and Berntsen, E. (2015). Growth dynamics of untreated glioblastomas in vivo, Neuro-Oncology 17(10): 1402–1411, DOI: 10.1093/neuonc/nov029. Search in Google Scholar

Świerniak, A., Ledzewicz, U. and Schättler, H. (2003). Optimal control for a class of compartmental models in cancer chemotherapy, International Journal of Applied Mathematics and Computer Science 13(3): 357–368. Search in Google Scholar

Wang, A.X., Ong, X.J., D’Souza, C., Neeson, P.J. and Zhu, J.J. (2023). Combining chemotherapy with CAR-T cell therapy in treating solid tumors, Frontiers in Immunology 14: 1140541, DOI: 10.3389/fimmu.2023.1140541. Search in Google Scholar

Yabo, Y.A., Niclou, S.P. and Golebiewska, A. (2021). Cancer cell heterogeneity and plasticity: A paradigm shift in glioblastoma, Neuro-Oncology 24(5): 669–682, DOI: 10.1093/neuonc/noab269. Search in Google Scholar

eISSN:
2083-8492
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Mathematics, Applied Mathematics