Acceso abierto

Lightweight Compression with Encryption Based on Asymmetric Numeral Systems

International Journal of Applied Mathematics and Computer Science's Cover Image
International Journal of Applied Mathematics and Computer Science
Image Analysis, Classification and Protection (Special section, pp. 7-70), Marcin Niemiec, Andrzej Dziech and Jakob Wassermann (Eds.)

Cite

Alakuijala, J., Van Asseldonk, R., Boukortt, S., Bruse, M., Comşa, I.-M., Firsching, M., Fischbacher, T., Kliuchnikov, E., Gomez, S., Obryk, R. et al. (2019). JPEG XL next-generation image compression architecture and coding tools, Applications of Digital Image Processing XLII, San Diego, USA, pp. 112–124. Search in Google Scholar

ALC (2017). Apple LZFSE compressor, https://github.com/lzfse/lzfse. Search in Google Scholar

Baptista, M. (1998). Cryptography with chaos, Physics Letters A 240(1): 50–54. Search in Google Scholar

Bassham, L., Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Leigh, S., Levenson, M., Vangel, M., Heckert, N. and Banks, D. (2010). A statistical test suite for random and pseudorandom number generators for cryptographic applications, NIST SP 800-22 Rev 1a, National Institute of Standards and Technology, Gaithersburg, https://www.nist.gov/publications/statistical-test-suite-random-and-pseudorandom-number-generators-cryptographic. Search in Google Scholar

Buzidi, H. (2014). LzTurbo compressor, https://sites.google.com/site/powturbo/. Search in Google Scholar

Camtepe, S., Duda, J., Mahboubi, A., Morawiecki, P., Nepal, S., Pawłowski, M. and Pieprzyk, J. (2021). CompCrypt—lightweight ANS-based compression and encryption, IEEE Transactions on Information Forensics and Security 16: 3859–3873. Search in Google Scholar

Cole, P.H. and Ranasinghe, D.C. (2008). Networked RFID Systems and Lightweight Cryptography, Springer, London. Search in Google Scholar

Collet, Y. (2013a). New generation entropy codecs: Finite state entropy and Huff 0, https://github.com/Cyan4973/FiniteStateEntropy. Search in Google Scholar

Collet, Y. (2013b). Zhuff compressor, http://fastcompression.blogspot.com/p/zhuff.html. Search in Google Scholar

Duda, J. (2009). Asymmetric numerical systems, arXiv: 0902.0271. Search in Google Scholar

Duda, J. (2014a). ANS toolkit, https://github.com/JarekDuda/AsymmetricNumeralSystemsToolkit. Search in Google Scholar

Duda, J. (2014b). Asymmetric numeral systems: Entropy coding combining speed of Huffman coding with compression rate of arithmetic coding, arXiv: 1311.2540. Search in Google Scholar

Duda, J., Tahboub, K., Gadgil, N.J. and Delp, E.J. (2015). The use of asymmetric numeral systems as an accurate replacement for Huffman coding, 31st Picture Coding Symposium, Cairns, Australia, pp. 65–69. Search in Google Scholar

Eisenbarth, T., Kumar, S., Paar, C., Poschmann, A. and Uhsadel, L. (2007). A survey of lightweight-cryptography implementations, IEEE Design & Test of Computers 24(6): 522–533. Search in Google Scholar

El-Douh, A.A.-R., Lu, S.F., Elkouny, A.A. and Amein, A.S. (2022). Hybrid cryptography with a one-time stamp to secure contact tracing for COVID-19 infection, International Journal of Applied Mathematics and Computer Science 32(1): 139–146, DOI: 10.34768/amcs-2022-0011. Open DOISearch in Google Scholar

FZC (2016). Facebook Zstandard compressor, https://github.com/facebook/zstd. Search in Google Scholar

Francesco, N. (2014). LZA compressor, http://heartofcomp.altervista.org/. Search in Google Scholar

Giesen, F. (2014). Simple rAns encoder/decoder, https://github.com/rygorous/ryg_rans. Search in Google Scholar

Gillman, D.W., Mohtashemi, M. and Rivest, R.L. (1996). On breaking a Huffman code, IEEE Transactions on Information Theory 42(3): 972–976. Search in Google Scholar

Huang, Z., Liu, S., Qin, B. and Chen, K. (2015). Sender-equivocable encryption schemes secure against chosen-ciphertext attacks revisited, International Journal of Applied Mathematics and Computer Science 25(2): 415–430, DOI: 10.1515/amcs-2015-0032. Open DOISearch in Google Scholar

Huffman, D. (1952). A method for the construction of minimum redundancy codes, Proceedings of the IRE 40(9): 1098–1101. Search in Google Scholar

Jakimoski, G. and Kocarev, L. (2001). Chaos and cryptography: Block encryption ciphers based on chaotic maps, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 48(2): 163–169. Search in Google Scholar

Kelley, J. and Tamassia, R. (2014). Secure compression: Theory & practice, Cryptology ePrint Archive, Report 2014/113, https://eprint.iacr.org/2014/113. Search in Google Scholar

Kim, H., Wen, J. and Villasenor, J.D. (2007). Secure arithmetic coding, IEEE Transactions on Signal Processing 55(5): 2263–2272. Search in Google Scholar

Külekci, M.O. (2012). On scrambling the Burrows–Wheeler transform to provide privacy in lossless compression, Computers & Security 31(1): 26–32. Search in Google Scholar

Mahboubi, A., Ansari, K., Camtepe, S., Duda, J., Morawiecki, P., Pawłowski, M. and Pieprzyk, J. (2022). Digital immunity module: Preventing unwanted encryption using source coding, TechRxiv, (preprint). Search in Google Scholar

Marpe, D., Schwarz, H. and Wiegand, T. (2003). Context-based adaptive binary arithmetic coding in the H.264/AVC video compression standard, IEEE Transactions on Circuits and Systems for Video Technology 13(7): 620–636. Search in Google Scholar

Martin, G. (1979). Range encoding: An algorithm for removing redundancy from a digitized message, Institution of Electronic and Radio Engineers International Conference on Video and Data Recording, Southampton, UK. Search in Google Scholar

Najmabadi, S.M., Wang, Z., Baroud, Y. and Simon, S. (2015). High throughput hardware architectures for asymmetric numeral systems entropy coding, 9th IEEE International Symposium on Image and Signal Processing and Analysis (ISPA), Zagreb, Croatia, pp. 256–259. Search in Google Scholar

Pieprzyk, J., Pawlowski, M., Morawiecki, P., Mahboubi, A., Duda, J. and Camtepe, S. (2022). Pseudorandom bit generation with asymmetric numeral systems, Cryptology ePrint Archive, Report 2022/005, https://ia.cr/2022/005. Search in Google Scholar

Poschmann, A.Y. (2009). Lightweight cryptography: Cryptographic engineering for a pervasive world, Cryptology ePrint Archive, Paper 2009/516, https://eprint.iacr.org/2009/516. Search in Google Scholar

Rissanen, J.J. (1976). Generalized Kraft inequality and arithmetic coding, IBM Journal of Research and Development 20(3): 198–203. Search in Google Scholar

Tseng, K.-K., Jiang, J.M., Pan, J.-S., Tang, L.L., Hsu, C.-Y. and Chen, C.-C. (2012). Enhanced Huffman coding with encryption for wireless data broadcasting system, IEEE International Symposium on Computer, Consumer and Control (IS3C), Taichung, Taiwan, pp. 622–625. Search in Google Scholar

Witten, I.H. and Cleary, J.G. (1988). On the privacy afforded by adaptive text compression, Computers & Security 7(4): 397–408. Search in Google Scholar

Xie, D. and Kuo, C.-C. (2005). Secure Lempel–Ziv compression with embedded encryption, Electronic Imaging 2005, San Jose, USA pp. 318–327, DOI: 10.1117/12.590665. Open DOISearch in Google Scholar

eISSN:
2083-8492
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Mathematics, Applied Mathematics