[
Ban, A., Coroianu, L. and Grzegorzewski, P. (2015). Fuzzy Numbers: Approximations, Ranking and Applications, Polish Academy of Sciences, Warsaw.
]Search in Google Scholar
[
Casella, G. (2003). Introduction to the silver anniversary of the bootstrap, Statistical Science 18(2): 133–134.10.1214/ss/1063994967
]Search in Google Scholar
[
Colubi, A., Fernández-García, C. and Gil, M. (2002). Simulation of random fuzzy variables: An empirical approach to statistical/probabilistic studies with fuzzy experimental data, IEEE Transactions on Fuzzy Systems 10(3): 384–390.10.1109/TFUZZ.2002.1006441
]Search in Google Scholar
[
Couso, I. and Dubois, D. (2014). Statistical reasoning with set-valued information: Ontic vs. epistemic views, International Journal of Approximate Reasoning 55(7): 1502–1518.
]Search in Google Scholar
[
Couso, I. and Sánchez, L. (2011). Inner and outer fuzzy approximations of confidence intervals, Fuzzy Sets and Systems 184(1): 68–83.10.1016/j.fss.2010.11.004
]Search in Google Scholar
[
Davison, A.C. and Hinkley, D.V. (1997). Bootstrap Methods and Their Application, Cambridge University Press, Cambridge.10.1017/CBO9780511802843
]Search in Google Scholar
[
De Angelis, D. and Young, G.A. (1992). Smoothing the bootstrap, International Statistical Review 60(1): 45–56.10.2307/1403500
]Search in Google Scholar
[
Denœux, T. (2011). Maximum likelihood estimation from fuzzy data using the EM algorithm, Fuzzy Sets and Systems 183(1): 72–91.10.1016/j.fss.2011.05.022
]Search in Google Scholar
[
Efron, B. (1979). Bootstrap methods: Another look at the jackknife, Annals of Statistics 7(1): 1–26.10.1214/aos/1176344552
]Search in Google Scholar
[
Ferson, S., Kreinovich, V., Hajagos, J., Oberkampf, W. and Ginzburg, L. (2007). Experimental uncertainty estimation and statistics for data having interval uncertainty, Technical Report SAND2007-0939, Applied Biomathematics, New York.10.2172/910198
]Search in Google Scholar
[
Gil, M., Montenegro, M., González-Rodríguez, G., Colubi, A. and Casals, M. (2006). Bootstrap approach to the multi-sample test of means with imprecise data, Computational Statistics and Data Analysis 51(1): 148–162.10.1016/j.csda.2006.04.018
]Search in Google Scholar
[
Giné, E. and Zinn, J. (1990). Bootstrapping general empirical measures, Annals of Probability 18(2): 851–869.10.1214/aop/1176990862
]Search in Google Scholar
[
González-Rodríguez, G., Montenegro, M., Colubi, A. and Gil, M. (2006). Bootstrap techniques and fuzzy random variables: Synergy in hypothesis testing with fuzzy data, Fuzzy Sets and Systems 157(19): 2608–2613.10.1016/j.fss.2003.11.021
]Search in Google Scholar
[
Grzegorzewski, P. (2000). Testing statistical hypotheses with vague data, Fuzzy Sets and Systems 112(3): 501–510.10.1016/S0165-0114(98)00061-X
]Search in Google Scholar
[
Grzegorzewski, P. (2001). Fuzzy tests—defuzzification and randomization, Fuzzy Sets and Systems 118(3): 437–446.10.1016/S0165-0114(98)00462-X
]Search in Google Scholar
[
Grzegorzewski, P. and Goławska, J. (2021). In search of a precise estimator based on imprecise data, Joint Proceedings of the IFSA-EUSFLAT-AGOP 2021 Conferences, Bratislava, Slovakia, pp. 530–537.
]Search in Google Scholar
[
Grzegorzewski, P. and Hryniewicz, O. (2002). Computing with words and life data, International Journal of Applied Mathematics and Computer Science 12(3): 337–345.
]Search in Google Scholar
[
Grzegorzewski, P., Hryniewicz, O. and Romaniuk, M. (2019). Flexible bootstrap based on the canonical representation of fuzzy numbers, Proceedings of EUSFLAT 2019, Prague, Czech Republic, pp. 490–497.
]Search in Google Scholar
[
Grzegorzewski, P., Hryniewicz, O. and Romaniuk, M. (2020a). Flexible bootstrap for fuzzy data based on the canonical representation, International Journal of Computational Intelligence Systems 13(1): 1650–1662.10.2991/ijcis.d.201012.003
]Search in Google Scholar
[
Grzegorzewski, P., Hryniewicz, O. and Romaniuk, M. (2020b). Flexible resampling for fuzzy data, International Journal of Applied Mathematics and Computer Science 30(2): 281–297, DOI: 10.34768/amcs-2020-0022.
]Abierto DOISearch in Google Scholar
[
Grzegorzewski, P. and Romaniuk, M. (2021). Epistemic bootstrap for fuzzy data, Joint Proceedings of the IFSAEUSFLAT-AGOP 2021 Conferences, Bratislava, Slovakia, pp. 538–545.
]Search in Google Scholar
[
Hall, P., DiCiccio, T. and Romano, J. (1989). On smoothing and the bootstrap, Annals of Statistics 17(2): 692–704.10.1214/aos/1176347135
]Search in Google Scholar
[
Hukuhara, M. (1967). Integration des applications measurables dont la valeur est un compact convexe, Funkcialaj Ekvacioj 10: 205–223.
]Search in Google Scholar
[
Kołacz, A. and Grzegorzewski, P. (2019). Asymptotic algorithm for computing the sample variance of interval data, Iranian Journal of Fuzzy Systems 16(4): 83–96.
]Search in Google Scholar
[
Kroese, D.P., Taimre, T. and Botev, Z.I. (2011). Handbook of Monte Carlo Methods, Wiley, Hoboken.10.1002/9781118014967
]Search in Google Scholar
[
Kruse, R. (1982). The strong law of large numbers for fuzzy random variables, Information Sciences 28(3): 233–241.10.1016/0020-0255(82)90049-4
]Search in Google Scholar
[
Kwakernaak, H. (1978). Fuzzy random variables, Part I: Definitions and theorems, Information Sciences 15(1): 1–15.10.1016/0020-0255(78)90019-1
]Search in Google Scholar
[
Lubiano, M.A., Montenegro, M., Sinova, B., de la Rosa de Sáa, S. and Gil, M.A. (2016). Hypothesis testing for means in connection with fuzzy rating scale-based data: Algorithms and applications, European Journal of Operational Research 251(3): 918–929.10.1016/j.ejor.2015.11.016
]Search in Google Scholar
[
Lubiano, M.A., Salas, A., Carleos, C., de la Rosa de Sáa, S. and Gil, M.A. (2017). Hypothesis testing-based comparative analysis between rating scales for intrinsically imprecise data, International Journal of Approximate Reasoning 88: 128–147.10.1016/j.ijar.2017.05.007
]Search in Google Scholar
[
Montenegro, M., Colubi, A., Casals, M. and Gil, M. (2004). Asymptotic and bootstrap techniques for testing the expected value of a fuzzy random variable, Metrika 59: 31–49.10.1007/s001840300270
]Search in Google Scholar
[
Nguyen, H., Kreinovich, V., Wu, B. and Xiang, G. (2012). Computing Statistics under Interval and Fuzzy Uncertainty, Springer, Berlin/Heidelberg.10.1007/978-3-642-24905-1_12
]Search in Google Scholar
[
Parchami, A. (2018). EM algorithm for maximum likelihood estimation by non-precise information, https://cran.r-project.org/package=EM.Fuzzy.
]Search in Google Scholar
[
Pedrycz, W. (1994). Why triangular membership functions?, Fuzzy Sets and Systems 64(1): 21–30.10.1016/0165-0114(94)90003-5
]Search in Google Scholar
[
Piegat, A. (2005). A new definition of the fuzzy set, International Journal of Applied Mathematics and Computer Science 15(1): 125–140.
]Search in Google Scholar
[
Ramos-Guajardo, A., Blanco-Fernández, A. and González-Rodríguez, G. (2019). Applying statistical methods with imprecise data to quality control in cheese manufacturing, in P. Grzegorzewski et al. (Eds), Soft Modeling in Industrial Manufacturing, Springer, Berlin/Heidelberg, pp. 127–147.10.1007/978-3-030-03201-2_8
]Search in Google Scholar
[
Ramos-Guajardo, A. and Grzegorzewski, P. (2016). Distance-based linear discriminant analysis for interval-valued data, Information Sciences 372: 591–607.10.1016/j.ins.2016.08.068
]Search in Google Scholar
[
Ramos-Guajardo, A. and Lubiano, M. (2012). k-Sample tests for equality of variances of random fuzzy sets, Computational Statistics and Data Analysis 56(4): 956–966.10.1016/j.csda.2010.11.025
]Search in Google Scholar
[
Romaniuk, M. (2019). On some applications of simulations in estimation of maintenance costs and in statistical tests for fuzzy settings, in A. Steland et al. (Eds), Stochastic Models, Statistics and Their Applications, Springer, Cham, pp. 437–448.10.1007/978-3-030-28665-1_33
]Search in Google Scholar
[
Romaniuk, M. and Hryniewicz, O. (2019). Interval-based, nonparametric approach for resampling of fuzzy numbers, Soft Computing 23: 5883–5903.10.1007/s00500-018-3251-5
]Search in Google Scholar
[
Romaniuk, M. and Hryniewicz, O. (2021). Discrete and smoothed resampling methods for interval-valued fuzzy numbers, IEEE Transactions on Fuzzy Systems 29(3): 599–611.10.1109/TFUZZ.2019.2957253
]Search in Google Scholar
[
Sevinc, B., Cetintav, B., Esemen, M. and Gurler, S. (2019). RSSampling: A pioneering package for ranked set sampling, The R Journal 11(1): 401–415.10.32614/RJ-2019-039
]Search in Google Scholar
[
Shao, J. and Tu, D. (1995). The Jackknife and Bootstrap, Springer, New York.10.1007/978-1-4612-0795-5
]Search in Google Scholar
[
Silverman, B.W. and Young, G.A. (1987). The bootstrap: To smooth or not to smooth?, Biometrika 74(3): 469–479.10.1093/biomet/74.3.469
]Search in Google Scholar
[
Suresh, H. and Guttag, J.V. (2021). A framework for understanding sources of harm throughout the machine learning life cycle, Equity and Access in Algorithms, Mechanisms, and Optimization (EAAMO ’21), New York, USA.10.1145/3465416.3483305
]Search in Google Scholar
[
Vavasis, S.A. (1991). Nonlinear Optimization: Complexity Issues, Oxford University Press, New York.
]Search in Google Scholar
[
Wang, D. and Hryniewicz, O. (2015). A fuzzy nonparametric Shewhart chart based on the bootstrap approach, International Journal of Applied Mathematics and Computer Science 25(2): 389–401, DOI: 10.1515/amcs-2015-0030.
]Abierto DOISearch in Google Scholar
[
Wolfe, D.A. (2004). Ranked set sampling: An approach to more efficient data collection, Statistical Science 19(4): 636–643.10.1214/088342304000000369
]Search in Google Scholar
[
Zadeh, L.A. (1973). Outline of a new approach to the analysis of complex systems and decision processes, IEEE Transactions on Systems, Man and Cybernetics SMC-3(1): 28–44.10.1109/TSMC.1973.5408575
]Search in Google Scholar