Acceso abierto

Approximate State–Space and Transfer Function Models for 2×2 Linear Hyperbolic Systems with Collocated Boundary Inputs

International Journal of Applied Mathematics and Computer Science's Cover Image
International Journal of Applied Mathematics and Computer Science
Big Data and Signal Processing (Special section, pp. 399-473), Joanna Kołodziej, Sabri Pllana, Salvatore Vitabile (Eds.)

Cite

Ahmad, I. and Berzins, M. (2001). MOL solvers for hyperbolic PDEs with source terms, Mathematics and Computers in Simulation56(2): 115–125.10.1016/S0378-4754(01)00284-1Search in Google Scholar

Albertos, P. and Sala, A. (2004). Multivariable Control Systems: An Engineering Approach, Springer, London.Search in Google Scholar

Anfinsen, H. and Aamo, O.M. (2018). Adaptive control of linear 2×2 hyperbolic systems, Automatica87: 69–82.10.1016/j.automatica.2017.09.020Search in Google Scholar

Anfinsen, H. and Aamo, O.M. (2019). Adaptive Control of Hyperbolic PDEs, Springer, Cham.10.1007/978-3-030-05879-1Search in Google Scholar

Anfinsen, H., Diagne, M., Aamo, O. and Krstić, M. (2017). Estimation of boundary parameters in general heterodirectional linear hyperbolic systems, Automatica79: 185–197.10.1016/j.automatica.2017.01.015Search in Google Scholar

Arov, D.Z., Kurula, M. and Staffans, O.J. (2012). Boundary control state/signal systems and boundary triplets, in A. Hassi et al. (Eds), Operator Methods for Boundary Value Problems, Cambridge University Press, Cambridge, pp. 73–86.10.1017/CBO9781139135061.005Search in Google Scholar

Bartecki, K. (2013a). Computation of transfer function matrices for 2×2 strongly coupled hyperbolic systems of balance laws, Proceedings of the 2nd Conference on Control and Fault-Tolerant Systems, Nice, France, pp. 578–583.10.1109/SysTol.2013.6693813Search in Google Scholar

Bartecki, K. (2013b). A general transfer function representation for a class of hyperbolic distributed parameter systems, International Journal of Applied Mathematics and Computer Science23(2): 291–307, DOI: 10.2478/amcs-2013-0022.10.2478/amcs-2013-0022Search in Google Scholar

Bartecki, K. (2015a). Abstract state-space models for a class of linear hyperbolic systems of balance laws, Reports on Mathematical Physics76(3): 339–358.10.1016/S0034-4877(15)30037-9Search in Google Scholar

Bartecki, K. (2015b). Transfer function-based analysis of the frequency-domain properties of a double pipe heat exchanger, Heat and Mass Transfer51(2): 277–287.10.1007/s00231-014-1410-5Search in Google Scholar

Bartecki, K. (2016). Modeling and Analysis of Linear Hyperbolic Systems of Balance Laws, Springer, Cham.10.1007/978-3-319-27501-7Search in Google Scholar

Bartecki, K. (2019). Approximation state-space model for 2×2 hyperbolic systems with collocated boundary inputs, 24th International Conference on Methods and Models in Automation and Robotics (MMAR), Międzyzdroje, Poland, pp. 513–518.Search in Google Scholar

Bastin, G. and Coron, J.-M. (2016). Stability and Boundary Stabilization of 1-D Hyperbolic Systems, Birkhäuser, Basel.10.1007/978-3-319-32062-5Search in Google Scholar

Callier, F.M. and Winkin, J. (1993). Infinite dimensional system transfer functions, in R.F. Curtain et al. (Eds), Analysis and Optimization of Systems: State and Frequency Domain Approaches for Infinite-Dimensional Systems, Springer, Berlin/Heidelberg, pp. 75–101.10.1007/BFb0115021Search in Google Scholar

Cockburn, B., Johnson, C., Shu, C. and Tadmor, E. (1998). Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Springer, Heidelberg.10.1007/BFb0096351Search in Google Scholar

Coron, J., Li, T. and Li, Y. (2019). One-Dimensional Hyperbolic Conservation Laws and Their Applications, World Scientific, Singapore.10.1142/11153Search in Google Scholar

Curtain, R.F. and Zwart, H. (1995). An Introduction to Infinite-Dimensional Linear Systems Theory, Springer, New York, NY.10.1007/978-1-4612-4224-6Search in Google Scholar

Curtain, R. and Morris, K. (2009). Transfer functions of distributed parameters systems: A tutorial, Automatica45(5): 1101–1116.10.1016/j.automatica.2009.01.008Search in Google Scholar

Deutscher, J. (2017). Finite-time output regulation for linear 2×2 hyperbolic systems using backstepping, Automatica75: 54–62.10.1016/j.automatica.2016.09.020Search in Google Scholar

Doyle, J., Francis, B. and Tannenbaum, A. (1992). Feedback Control Theory, Macmillan, New York, NY.Search in Google Scholar

Emirsajłow, Z. and Townley, S. (2000). From PDEs with boundary control to the abstract state equation with an unbounded input operator: A tutorial, European Journal of Control6(1): 27–49.10.1016/S0947-3580(00)70908-3Search in Google Scholar

Engel, K.-J. and Nagel, R. (2000). One-Parameter Semigroups for Linear Evolution Equations, Springer, New York, NY.Search in Google Scholar

Godlewski, E. and Raviart, P.-A. (1996). Numerical Approximation of Hyperbolic Systems of Conservation Laws, Springer, New York, NY.10.1007/978-1-4612-0713-9Search in Google Scholar

Grabowski, P. and Callier, F.M. (2001). Circle criterion and boundary control systems in factor form: Input–output approach, International Journal of Applied Mathematics and Computer Science11(6): 1387–1403.Search in Google Scholar

Gugat, M., Herty, M. and Yu, H. (2018). On the relaxation approximation for 2×2 hyperbolic balance laws, in C. Klingenberg and M. Westdickenberg (Eds), Theory, Numerics and Applications of Hyperbolic Problems I, Springer, Cham, pp. 651–663.10.1007/978-3-319-91545-6_50Search in Google Scholar

Hu, L., Di Meglio, F., Vazquez, R. and Krstić, M. (2016). Control of homodirectional and general heterodirectional linear coupled hyperbolic PDEs, IEEE Transactions on Automatic Control61(11): 3301–3314.10.1109/TAC.2015.2512847Search in Google Scholar

Jones, B.L. and Kerrigan, E.C. (2010). When is the discretization of a spatially distributed system good enough for control?, Automatica46(9): 1462–1468.10.1016/j.automatica.2010.06.001Search in Google Scholar

Kitsos, C., Besançon, G. and Prieur, C. (2019). A high-gain observer for a class of 2×2 hyperbolic systems with C1 exponential convergence, IFAC-PapersOnLine52(2): 174–179.10.1016/j.ifacol.2019.08.031Search in Google Scholar

Koto, T. (2004). Method of lines approximations of delay differential equations, Computers & Mathematics with Applications48(1–2): 45–59.10.1016/j.camwa.2004.01.003Search in Google Scholar

Lalot, S. and Desmet, B. (2019). The harmonic response of counter-flow heat exchangers—Analytical approach and comparison with experiments, International Journal of Thermal Sciences135: 163–172.10.1016/j.ijthermalsci.2018.09.010Search in Google Scholar

LeVeque, R. (2002). Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, Cambridge.10.1017/CBO9780511791253Search in Google Scholar

Levine, W.S. (Ed.) (2011). The Control Systems Handbook: Control System Advanced Methods, Electrical Engineering Handbook, CRC Press, Boca Raton, FL.Search in Google Scholar

Li, H.-X. and Qi, C. (2010). Modeling of distributed parameter systems for applications—A synthesized review from time-space separation, Journal of Process Control20(8): 891–901.10.1016/j.jprocont.2010.06.016Search in Google Scholar

Litrico, X. and Fromion, V. (2009a). Boundary control of hyperbolic conservation laws using a frequency domain approach, Automatica45(3): 647–656.10.1016/j.automatica.2008.09.022Search in Google Scholar

Litrico, X. and Fromion, V. (2009b). Modeling and Control of Hydrosystems, Springer, London.10.1007/978-1-84882-624-3Search in Google Scholar

Maidi, A., Diaf, M. and Corriou, J.-P. (2010). Boundary control of a parallel-flow heat exchanger by input–output linearization, Journal of Process Control20(10): 1161–1174.10.1016/j.jprocont.2010.07.005Search in Google Scholar

Mattheij, R.M.M., Rienstra, S.W. and ten Thije Boonkkamp, J.H.M. (2005). Partial Differential Equations: Modeling, Analysis, Computation, SIAM, Philadelphia, PA.10.1137/1.9780898718270Search in Google Scholar

Partington, J.R. (2004). Some frequency-domain approaches to the model reduction of delay systems, Annual Reviews in Control28(1): 65–73.10.1016/j.arcontrol.2004.01.007Search in Google Scholar

Polyanin, A.D. and Manzhirov, A.V. (1998). Handbook of Integral Equations, CRC Press, Boca Raton, FL.10.1201/9781420050066Search in Google Scholar

Rauh, A., Senkel, L., Aschemann, H., Saurin, V.V. and Kostin, G.V. (2016). An integrodifferential approach to modeling, control, state estimation and optimization for heat transfer systems, International Journal of Applied Mathematics and Computer Science26(1): 15–30, DOI: 10.1515/amcs-2016-0002.10.1515/amcs-2016-0002Search in Google Scholar

Ray, W.H. (1981). Advanced Process Control, McGraw-Hill New York, NY.Search in Google Scholar

Russell, D.L. (1978). Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions, SIAM Review20(4): 639–739.10.1137/1020095Search in Google Scholar

Schiesser, W.E. and Griffiths, G.W. (2009). A Compendium of Partial Differential Equation Models: Method of Lines Analysis with Matlab, Cambridge University Press, New York, NY.10.1017/CBO9780511576270Search in Google Scholar

Shakeri, F. and Dehghan, M. (2008). The method of lines for solution of the one-dimensional wave equation subject to an integral conservation condition, Computers & Mathematics with Applications56(9): 2175–2188.10.1016/j.camwa.2008.03.055Search in Google Scholar

Tucsnak, M. and Weiss, G. (2009). Observation and Control for Operator Semigroups, Birkhäuser, Basel.10.1007/978-3-7643-8994-9Search in Google Scholar

Zavala-Río, A., Astorga-Zaragoza, C.M. and Hernández-González, O. (2009). Bounded positive control for double-pipe heat exchangers, Control Engineering Practice17(1): 136–145.10.1016/j.conengprac.2008.05.011Search in Google Scholar

Zwart, H. (2004). Transfer functions for infinite-dimensional systems, Systems and Control Letters52(3–4): 247–255.10.1016/j.sysconle.2004.02.002Search in Google Scholar

eISSN:
2083-8492
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Mathematics, Applied Mathematics