This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Argun YA, Karacali A, Calisir U, Kilinc N. Composting as a waste management method. J Int Environ Appl Sci. 2017;12(3):244–255.ArgunYAKaracaliACalisirUKilincN.Composting as a waste management method. J Int Environ Appl Sci. 2017;12(3):244–255.Search in Google Scholar
Arslan Topal EI, Ünlü A, Topal M. Effect of aeration rate on elimination of coliforms during composting of vegetable–fruit wastes. Int J Recycl Org Waste Agricult. 2016;5:243–249. https://doi. org/10.1007/s40093-016-0134-6Arslan TopalEIÜnlüATopalM.Effect of aeration rate on elimination of coliforms during composting of vegetable–fruit wastes. Int J Recycl Org Waste Agricult. 2016;5:243–249. https://doi.org/10.1007/s40093-016-0134-6Search in Google Scholar
Azarbad H, Niklińska M, Laskowski R, van Straalen NM, van Gestel CA, Zhou J, He Z, Wen C, Röling WF. Microbial community composition and functions are resilient to metal pollution along two forest soil gradients. FEMS Microbiol Ecol. 2015;91(1):1–11. https://doi.org/10.1093/femsec/fiu003AzarbadHNiklińskaMLaskowskiRvan StraalenNMvan GestelCAZhouJHeZWenCRölingWF.Microbial community composition and functions are resilient to metal pollution along two forest soil gradients. FEMS Microbiol Ecol. 2015;91(1):1–11. https://doi.org/10.1093/femsec/fiu003Search in Google Scholar
Brown CT, Hug LA, Thomas BC, Sharon I, Castelle CJ, Singh A, Wilkins MJ, Wrighton KC, Williams KH, Banfield JF. Unusual biology across a group comprising more than 15% of domain Bacteria. Nature. 2015;523(7559):208–211. https://doi.org/10.1038/nature14486BrownCTHugLAThomasBCSharonICastelleCJSinghAWilkinsMJWrightonKCWilliamsKHBanfieldJF.Unusual biology across a group comprising more than 15% of domain Bacteria. Nature. 2015;523(7559):208–211. https://doi.org/10.1038/nature14486Search in Google Scholar
Cao G, Song T, Shen Y, Jin Q, Feng W, Fan L. Cai W. Diversity of bacterial and fungal communities in wheat straw compost for Agaricus bisporus cultivation. HortScience. 2019;54(1):100–109. https://doi.org/10.21273/hortsci13598-18CaoGSongTShenYJinQFengWFanL.Cai W. Diversity of bacterial and fungal communities in wheat straw compost for Agaricus bisporus cultivation. HortScience. 2019;54(1):100–109. https://doi.org/10.21273/hortsci13598-18Search in Google Scholar
Cao J, Li R, Qu H, Wang P, Fu J, Chen M, Chen Y. Effects of the membrane-covered technology and superphosphate on the compost quality and nitrogen-containing gas emissions during aerobic composting. BioResources. 2022;17(1);1781–1793. https://doi. org/10.15376/biores.17.1.1781-1793CaoJLiRQuHWangPFuJChenMChenY.Effects of the membrane-covered technology and superphosphate on the compost quality and nitrogen-containing gas emissions during aerobic composting. BioResources. 2022;17(1);1781–1793. https://doi.org/10.15376/biores.17.1.1781-1793Search in Google Scholar
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335–3356. https://doi. org/10.1038/nmeth.f.303CaporasoJGKuczynskiJStombaughJBittingerKBushmanFDCostelloEKFiererNPeñaAGGoodrichJKGordonJIQIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335–3356. https://doi.org/10.1038/nmeth.f.303Search in Google Scholar
Castro-Alba V, Lazarte CE, Perez-Rea D, Carlsson NG, Almgren A, Bergenståhl B, Granfeldt Y. Fermentation of pseudocereals quinoa, canihua, and amaranth to improve mineral accessibility through degradation of phytate. J Sci Food Agric. 2019;99(11):5239– 5248. https://doi.org/10.1002/jsfa.9793Castro-AlbaVLazarteCEPerez-ReaDCarlssonNGAlmgrenABergenståhlBGranfeldtY.Fermentation of pseudocereals quinoa, canihua, and amaranth to improve mineral accessibility through degradation of phytate. J Sci Food Agric. 2019;99(11):5239– 5248. https://doi.org/10.1002/jsfa.9793Search in Google Scholar
Cheung HN, Huang GH, Yu H. Microbial-growth inhibition during composting of food waste: Effects of organic acids. Bioresour Technol. 2010;101(15):5925–5934. https://doi.org/10.1016/j. biortech.2010.02.062CheungHNHuangGHYuH.Microbial-growth inhibition during composting of food waste: Effects of organic acids. Bioresour Technol. 2010;101(15):5925–5934. https://doi.org/10.1016/j.biortech.2010.02.062Search in Google Scholar
De Corato U. Agricultural waste recycling in horticultural intensive farming systems by on-farm composting and compost-based tea application improves soil quality and plant health: A review under the perspective of a circular economy. Sci Total Environ. 2020;738:139840. https://doi.org/10.1016/j.scitotenv.2020.139840De CoratoU.Agricultural waste recycling in horticultural intensive farming systems by on-farm composting and compost-based tea application improves soil quality and plant health: A review under the perspective of a circular economy. Sci Total Environ. 2020;738:139840. https://doi.org/10.1016/j.scitotenv.2020.139840Search in Google Scholar
Díaz-Valderrama JR, Nguyen HDT, Aime MC. Wallemia peruviensis sp. nov., a new xerophilic fungus from an agricultural setting in South America. Extremophiles. 2017;21(6):1017–1025. https://doi.org/10.1007/s00792-017-0960-0Díaz-ValderramaJRNguyenHDTAimeMC.Wallemia peruviensis sp. nov., a new xerophilic fungus from an agricultural setting in South America. Extremophiles. 2017;21(6):1017–1025. https://doi.org/10.1007/s00792-017-0960-0Search in Google Scholar
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26(19):2460–2461. https://doi. org/10.1093/bioinformatics/btq461EdgarRC.Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26(19):2460–2461. https://doi.org/10.1093/bioinformatics/btq461Search in Google Scholar
Fracchia L, Dohrmann AB, Martinotti MG, Tebbe CC. Bacterial diversity in a finished compost and vermicompost: Differences revealed by cultivation-independent analyses of PCR-amplified 16S rRNA genes. Appl Microbiol Biotechnol. 2006;71(6):942–952. https://doi.org/10.1007/s00253-005-0228-yFracchiaLDohrmannABMartinottiMGTebbeCC.Bacterial diversity in a finished compost and vermicompost: Differences revealed by cultivation-independent analyses of PCR-amplified 16S rRNA genes. Appl Microbiol Biotechnol. 2006;71(6):942–952. https://doi.org/10.1007/s00253-005-0228-ySearch in Google Scholar
Hartl J, Kiefer P, Meyer F, Vorholt JA. Longevity of major coenzymes allows minimal de novo synthesis in microorganisms. Nat Microbiol. 2017;2:17073. https://doi.org/10.1038/nmicrobiol.2017.73HartlJKieferPMeyerFVorholtJA.Longevity of major coenzymes allows minimal de novo synthesis in microorganisms. Nat Microbiol. 2017;2:17073. https://doi.org/10.1038/nmicrobi-ol.2017.73Search in Google Scholar
Hoang HG, Thuy BTP, Lin C, Vo DN, Tran HT, Bahari MB, Le VG, Vu CT. The nitrogen cycle and mitigation strategies for nitrogen loss during organic waste composting: A review. Chemosphere. 2022;300:134514. https://doi.org/10.1016/j.chemosphere.2022.134514HoangHGThuyBTPLinCVoDNTranHTBahariMBLeVGVuCT.The nitrogen cycle and mitigation strategies for nitrogen loss during organic waste composting: A review. Chemosphere. 2022;300:134514. https://doi.org/10.1016/j.chemo-sphere.2022.134514Search in Google Scholar
Jančič S, Zalar P, Kocev D, Schroers HJ, Džeroski S, Gunde-Cimerman N. Halophily reloaded: New insights into the extremophilic life-style of Wallemia with the description of Wallemia hederae sp. nov. Fungal Diversity 2016;76;97–118. https://doi.org/10.1007/s13225-015-0333-xJančičSZalarPKocevDSchroersHJDžeroskiSGunde-CimermanN.Halophily reloaded: New insights into the extremophilic life-style of Wallemia with the description of Wallemia hederae sp. nov. Fungal Diversity2016;76;97–118. https://doi.org/10.1007/s13225-015-0333-xSearch in Google Scholar
Janczak D, Malińska K, Czekała W, Cáceres R, Lewicki A, Dach J. Biochar to reduce ammonia emissions in gaseous and liquid phase during composting of poultry manure with wheat straw. Waste Manag. 2017;66:36–45. https://doi.org/10.1016/j.wasman.2017.04.033JanczakDMalińskaKCzekałaWCáceresRLewickiADachJ.Biochar to reduce ammonia emissions in gaseous and liquid phase during composting of poultry manure with wheat straw. Waste Manag. 2017;66:36–45. https://doi.org/10.1016/j.wasman.2017.04.033Search in Google Scholar
Kanehisa M, Furumichi M, Sato Y, Matsuura Y, Ishiguro-Watanabe M. KEGG: Biological systems database as a model of the real world. Nucleic Acids Res. 2025 Jan;53(D1):D672–D677. https://doi.org/10.1093/nar/gkae909KanehisaMFurumichiMSatoYMatsuuraYIshiguro-WatanabeM.KEGG: Biological systems database as a model of the real world. Nucleic Acids Res. 2025Jan;53(D1):D672–D677. https://doi.org/10.1093/nar/gkae909Search in Google Scholar
Khleborodova A, Gamboa-Tuz SD, Ramos M, Segata N, Waldron L, Oh S. lefser: Implementation of metagenomic biomarker discovery tool, LEfSe, in R. Bioinformatics. 2024 Nov;40(12):b-tae707. https://doi.org/10.1093/bioinformatics/btae707KhleborodovaAGamboa-TuzSDRamosMSegataNWaldronLOhS.lefser: Implementation of metagenomic biomarker discovery tool, LEfSe, in R. Bioinformatics. 2024Nov;40(12):btae707. https://doi.org/10.1093/bioinformatics/btae707Search in Google Scholar
Kuczynski J, Lauber CL, Walters WA, Parfrey LW, Clemente JC, Gevers D, Knight R. Experimental and analytical tools for studying the human microbiome. Nat Rev Genet. 2011;13(1):47–58. https://doi.org/10.1038/nrg3129KuczynskiJLauberCLWaltersWAParfreyLWClementeJCGeversDKnightR.Experimental and analytical tools for studying the human microbiome. Nat Rev Genet. 2011;13(1):47–58. https://doi.org/10.1038/nrg3129Search in Google Scholar
Leconte MC, Mazzarino MJ, Satti P, Crego MP. Nitrogen and phosphorus release from poultry manure composts: The role of carbonaceous bulking agents and compost particle sizes. Biol Fertil Soils. 2011;47:897–906. https://doi.org/10.1007/s00374-011-0591-zLeconteMCMazzarinoMJSattiPCregoMP.Nitrogen and phosphorus release from poultry manure composts: The role of carbonaceous bulking agents and compost particle sizes. Biol Fertil Soils. 2011;47:897–906. https://doi.org/10.1007/s00374-011-0591-zSearch in Google Scholar
Li X, Li Y, Wu T, Qu C, Ning P, Shi J, Tian X. Potassium fertilization combined with crop straw incorporation alters soil potassium fractions and availability in northwest China: An incubation study. PLoS One. 2020;15(7):e0236634. https://doi.org/10.1371/journal. pone.0236634LiXLiYWuTQuCNingPShiJTianX.Potassium fertilization combined with crop straw incorporation alters soil potassium fractions and availability in northwest China: An incubation study. PLoS One. 2020;15(7):e0236634. https://doi.org/10.1371/journal.pone.0236634Search in Google Scholar
Liaw A, Wiener M. Classification and Regression by randomForest. R News. 2002;2(3):18–22 [cited 2025 May 05]. Available from https://CRAN.R-project.org/doc/RnewsLiawAWienerM.Classification and Regression by randomForest. R News. 2002;2(3):18–22 [cited 2025 May 05]. Available from https://CRAN.R-project.org/doc/RnewsSearch in Google Scholar
Liu N, Zhou J, Han L, Huang G. Characterization of lignocellulosic compositions’ degradation during chicken manure composting with added biochar by phospholipid fatty acid (PLFA) and correlation analysis. Sci Total Environ. 2017;586:1003–1011. https://doi. org/10.1016/j.scitotenv.2017.02.081LiuNZhouJHanLHuangG.Characterization of lignocellulosic compositions’ degradation during chicken manure composting with added biochar by phospholipid fatty acid (PLFA) and correlation analysis. Sci Total Environ. 2017;586:1003–1011. https://doi.org/10.1016/j.scitotenv.2017.02.081Search in Google Scholar
Luo Y, Shen J, Wang X, Xiao H, Yaser AZ, Fu J. Recent advances in research on microbial community in the composting process. Biomass Conv. Bioref. 2024;14:23319–23333. https://doi.org/10.1007/s13399-023-04616-9LuoYShenJWangXXiaoHYaserAZFuJ.Recent advances in research on microbial community in the composting process. Biomass Conv. Bioref. 2024;14:23319–23333. https://doi.org/10.1007/s13399-023-04616-9Search in Google Scholar
Magoč T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011 Nov 1;27(21):2957–2963. https://doi.org/10.1093/bioinformatics/btr507MagočTSalzbergSL.FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011Nov1;27(21):2957–2963. https://doi.org/10.1093/bioinformatics/btr507Search in Google Scholar
Manea EE, Bumbac C. Sludge composting – Is this a viable solution for wastewater sludge management? Water. 2024;16(16):2241. https://doi.org/10.3390/w16162241ManeaEEBumbacC.Sludge composting – Is this a viable solution for wastewater sludge management?Water. 2024;16(16):2241. https://doi.org/10.3390/w16162241Search in Google Scholar
Masunga RH, Uzokwe VN, Mlay PD, Odeh I, Singh A, Buchan D, De Neve S. Nitrogen mineralization dynamics of different valuable organic amendments commonly used in agriculture. Appl Soil Ecol. 2016;101;185–193. https://doi.org/10.1016/j.apsoil.2016.01.006MasungaRHUzokweVNMlayPDOdehISinghABuchanDDe NeveS.Nitrogen mineralization dynamics of different valuable organic amendments commonly used in agriculture. Appl Soil Ecol. 2016;101;185–193. https://doi.org/10.1016/j.apsoil.2016.01.006Search in Google Scholar
Nakasaki K, Araya S, Mimoto H. Inoculation of Pichia kudriavzevii RB1 degrades the organic acids present in raw compost material and accelerates composting. Bioresour Technol. 2013;144:521–528. https://doi.org/10.1016/j.biortech.2013.07.005NakasakiKArayaSMimotoH.Inoculation of Pichia kudriavzevii RB1 degrades the organic acids present in raw compost material and accelerates composting. Bioresour Technol. 2013;144:521–528. https://doi.org/10.1016/j.biortech.2013.07.005Search in Google Scholar
Nakasaki K, Hirai H, Mimoto H, Quyen TNM, Koyama M, Takeda K. Succession of microbial community during vigorous organic matter degradation in the primary fermentation stage of food waste composting. Sci Total Environ. 2019;671;1237–1244. https://doi. org/10.1016/j.scitotenv.2019.03.341NakasakiKHiraiHMimotoHQuyenTNMKoyamaMTakedaK.Succession of microbial community during vigorous organic matter degradation in the primary fermentation stage of food waste composting. Sci Total Environ. 2019;671;1237–1244. https://doi.org/10.1016/j.scitotenv.2019.03.341Search in Google Scholar
Partanen P, Hultman J, Paulin L, Auvinen P, Romantschuk M. Bacterial diversity at different stages of the composting process. BMC Microbiol. 2010;10:94. https://doi.org/10.1186/1471-2180- 10-94PartanenPHultmanJPaulinLAuvinenPRomantschukM.Bacterial diversity at different stages of the composting process. BMC Microbiol. 2010;10:94. https://doi.org/10.1186/1471-2180-10-94Search in Google Scholar
Paterson RRM, Lima N. Filamentous fungal human pathogens from food emphasising Aspergillus, Fusarium and Mucor. Microorganisms. 2017;5(3):44. https://doi.org/10.3390/microorganisms5030044PatersonRRMLimaN.Filamentous fungal human pathogens from food emphasising Aspergillus, Fusarium and Mucor. Microorganisms. 2017;5(3):44. https://doi.org/10.3390/microorganisms5030044Search in Google Scholar
Peng SL, Ge ZW, Liu GC, Mao LF. Environmental drivers of soil microbial activity and diversity along an elevational gradient. J Mt Sci. 2022;19:1336–1347. https://doi.org/10.1007/s11629-021- 7083-xPengSLGeZWLiuGCMaoLF.Environmental drivers of soil microbial activity and diversity along an elevational gradient. J Mt Sci. 2022;19:1336–1347. https://doi.org/10.1007/s11629-021-7083-xSearch in Google Scholar
Pitt JI, Hocking AD. Fungi and food spoilage. New York (USA): Springer; 1987.PittJIHockingAD.Fungi and food spoilage. New York (USA): Springer; 1987.Search in Google Scholar
Pollo SM, Zhaxybayeva O, Nesbø CL. Insights into thermoadaptation and the evolution of mesophily from the bacterial phylum Thermotogae. Can J Microbiol. 2015;61(9):655–670. https://doi. org/10.1139/cjm-2015-0073PolloSMZhaxybayevaONesbøCL.Insights into thermoadaptation and the evolution of mesophily from the bacterial phylum Thermotogae. Can J Microbiol. 2015;61(9):655–670. https://doi.org/10.1139/cjm-2015-0073Search in Google Scholar
Qiao C, Penton CR, Liu C, Tao C, Deng X, Ou Y, Liu H, Li R. Patterns of fungal community succession triggered by C/N ratios during composting. J Hazard Mater. 2021;401:123344. https://doi. org/10.1016/j.jhazmat.2020.123344QiaoCPentonCRLiuCTaoCDengXOuYLiuHLiR.Patterns of fungal community succession triggered by C/N ratios during composting. J Hazard Mater. 2021;401:123344. https://doi.org/10.1016/j.jhazmat.2020.123344Search in Google Scholar
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013 Jan;41(Database_issue):D590–D596. https://doi. org/10.1093/nar/gks1219QuastCPruesseEYilmazPGerkenJSchweerTYarzaPPepliesJGlöcknerFO.The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013Jan;41(Database_issue):D590–D596. https://doi.org/10.1093/nar/gks1219Search in Google Scholar
Rastogi M, Nandal M, Khosla B. Microbes as vital additives for solid waste composting. Heliyon. 2020;6(2):e03343. https://doi. org/10.1016/j.heliyon.2020.e03343RastogiMNandalMKhoslaB.Microbes as vital additives for solid waste composting. Heliyon. 2020;6(2):e03343. https://doi.org/10.1016/j.heliyon.2020.e03343Search in Google Scholar
Rosolem CA, Calonego JC, Foloni JSS. Potassium leaching from millet straw as affected by rainfall and potassium rates. Commun Soil Sci Plant Anal. 2005;36(7–8);1063–1074. https://doi. org/10.1081/css-200050497RosolemCACalonegoJCFoloniJSS.Potassium leaching from millet straw as affected by rainfall and potassium rates. Commun Soil Sci Plant Anal. 2005;36(7–8);1063–1074. https://doi.org/10.1081/css-200050497Search in Google Scholar
Sathiyapriya, S, Prabhaharan J, Sheeba S, Anandham R, Ilamaran M. Nutrient recycling through composting: Harnessing agricultural wastes for sustainable crop production. Plant Sci Today. 2024;11(sp4):01–13. https://doi.org/10.14719/pst.5627SathiyapriyaSPrabhaharanJSheebaSAnandhamRIlamaranM.Nutrient recycling through composting: Harnessing agricultural wastes for sustainable crop production. Plant Sci Today. 2024;11(sp4):01–13. https://doi.org/10.14719/pst.5627Search in Google Scholar
Schloss PD, Hay AG, Wilson DB, Gossett JM, Walker LP. Quantifying bacterial population dynamics in compost using 16S rRNA gene probes. Appl Microbiol Biotechnol. 2005;66(4):457–463. https://doi.org/10.1007/s00253-004-1727-ySchlossPDHayAGWilsonDBGossettJMWalkerLP.Quantifying bacterial population dynamics in compost using 16S rRNA gene probes. Appl Microbiol Biotechnol. 2005;66(4):457–463. https://doi.org/10.1007/s00253-004-1727-ySearch in Google Scholar
Wang G, Du Y, Ma X, Ye F, Qin Y, Wang Y, Xiang Y, Tao R, Chen T. Thermophilic nucleic acid polymerases and their application in xenobiology. Int J Mol Sci. 2022;23(23):14969. https://doi. org/10.3390/ijms232314969WangGDuYMaXYeFQinYWangYXiangYTaoRChenT.Thermophilic nucleic acid polymerases and their application in xenobiology. Int J Mol Sci. 2022;23(23):14969. https://doi.org/10.3390/ijms232314969Search in Google Scholar
Wang K, Mao H, Wang Z, Tian Y. Succession of organics metabolic function of bacterial community in swine manure composting. J Hazard Mater. 2018;360:471–480. https://doi.org/10.1016/j. jhazmat.2018.08.032WangKMaoHWangZTianY.Succession of organics metabolic function of bacterial community in swine manure composting. J Hazard Mater. 2018;360:471–480. https://doi.org/10.1016/j.jhazmat.2018.08.032Search in Google Scholar
Wei Y, Wu D, Wei D, Zhao Y, Wu J, Xie X, Zhang R, Wei Z. Improved lignocellulose-degrading performance during straw composting from diverse sources with actinomycetes inoculation by regulating the key enzyme activities. Bioresour Technol. 2019;271:66–74. https://doi.org/10.1016/j.biortech.2018.09.081WeiYWuDWeiDZhaoYWuJXieXZhangRWeiZ.Improved lignocellulose-degrading performance during straw composting from diverse sources with actinomycetes inoculation by regulating the key enzyme activities. Bioresour Technol. 2019;271:66–74. https://doi.org/10.1016/j.biortech.2018.09.081Search in Google Scholar
Wickham H. ggplot2: Elegant graphics for data analysis. New York (USA): Springer-Verlag; 2016.WickhamH.ggplot2: Elegant graphics for data analysis. New York (USA): Springer-Verlag; 2016.Search in Google Scholar
Wu J, Wei Z, Zhu Z, Zhao Y, Jia L, Lv P. Humus formation driven by ammonia-oxidizing bacteria during mixed materials composting. Bioresour Technol. 2020 Sep;311:123500. https://doi.org/10.1016/j. biortech.2020.123500WuJWeiZZhuZZhaoYJiaLLvP.Humus formation driven by ammonia-oxidizing bacteria during mixed materials composting. Bioresour Technol. 2020Sep;311:123500. https://doi.org/10.1016/j.biortech.2020.123500Search in Google Scholar
Wu Y, Islam A, Yang X, Qin C, Liu J, Zhang K, Peng W, Han L. Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition. Energy Environ. Sci. 2014;7(9):2934–2938. https://doi.org/10.1039/c4ee01624fWuYIslamAYangXQinCLiuJZhangKPengWHanL.Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition. Energy Environ. Sci. 2014;7(9):2934–2938. https://doi.org/10.1039/c4ee01624fSearch in Google Scholar
Xiong J, Ma S, He X, Han L, Huang G. Nitrogen transformation and dynamic changes in related functional genes during functional-membrane covered aerobic composting. Bioresour Technol. 2021;332:125087. https://doi.org/10.1016/j.biortech.2021.125087XiongJMaSHeXHanLHuangG.Nitrogen transformation and dynamic changes in related functional genes during functional-membrane covered aerobic composting. Bioresour Technol. 2021;332:125087. https://doi.org/10.1016/j.biortech.2021.125087Search in Google Scholar
Xiong J, Zhuo Q, Su Y, Qu H, He X, Han L, Huang G. Nitrogen evolution during membrane-covered aerobic composting: Interconversion between nitrogen forms and migration pathways. J Environ Manage. 2023;345:118727. https://doi.org/10.1016/j.jenvman.2023.118727XiongJZhuoQSuYQuHHeXHanLHuangG.Nitrogen evolution during membrane-covered aerobic composting: Interconversion between nitrogen forms and migration pathways. J Environ Manage. 2023;345:118727. https://doi.org/10.1016/j.jen-vman.2023.118727Search in Google Scholar
Xu M, Yang M, Sun H, Meng J, Li Y, Gao M, Wang Q, Wu C. Role of multistage inoculation on the co-composting of food waste and biogas residue. Bioresour Technol. 2022;361:127681. https://doi. org/10.1016/j.biortech.2022.127681XuMYangMSunHMengJLiYGaoMWangQWuC.Role of multistage inoculation on the co-composting of food waste and biogas residue. Bioresour Technol. 2022;361:127681. https://doi.org/10.1016/j.biortech.2022.127681Search in Google Scholar
Yang L, Jie G, She-Qi Z, Long-Xiang S, Wei S, Xun Q, Man-Li D, Ya-Nan Y, Xiao-Juan W. Effects of adding compound microbial inoculum on microbial community diversity and enzymatic activity during co-composting. Environ Eng Sci. 2018;35(4):270–278. https://doi.org/10.1089/ees.2016.0423YangLJieGShe-QiZLong-XiangSWeiSXunQMan-LiDYa-NanYXiao-JuanW.Effects of adding compound microbial inoculum on microbial community diversity and enzymatic activity during co-composting. Environ Eng Sci. 2018;35(4):270–278. https://doi.org/10.1089/ees.2016.0423Search in Google Scholar
Yaser AZ, Sarjadi MS, Lamaming J. Cellulose: Development, processing, and applications. Boca Raton (USA): CRC Press; 2024. https://doi.org/10.1201/9781003358084YaserAZSarjadiMSLamamingJ.Cellulose: Development, processing, and applications. Boca Raton (USA): CRC Press; 2024. https://doi.org/10.1201/9781003358084Search in Google Scholar
Yin Y, Yang C, Tang J, Gu J, Li H, Duan M, Wang X, Chen R. Bamboo charcoal enhances cellulase and urease activities during chicken manure composting: Roles of the bacterial community and metabolic functions. J Environ Sci. 2021;108:84–95. https://doi. org/10.1016/j.jes.2021.02.007YinYYangCTangJGuJLiHDuanMWangXChenR.Bamboo charcoal enhances cellulase and urease activities during chicken manure composting: Roles of the bacterial community and metabolic functions. J Environ Sci. 2021;108:84–95. https://doi.org/10.1016/j.jes.2021.02.007Search in Google Scholar
Zajc J, Gunde-Cimerman N. The genus Wallemia-from contamination of food to health threat. Microorganisms. 2018;6(2):46. https://doi.org/10.3390/microorganisms6020046ZajcJGunde-CimermanN.The genus Wallemia-from contamination of food to health threat. Microorganisms. 2018;6(2):46. https://doi.org/10.3390/microorganisms6020046Search in Google Scholar
Zalar P, Sybren de Hoog G, Schroers HJ, Frank JM, Gunde-Cimerman N. Taxonomy and phylogeny of the xerophilic genus Wallemia (Wallemiomycetes and Wallemiales, cl. et ord. nov.). Antonie Van Leeuwenhoek. 2005;87(4):311–328. https://doi.org/10.1007/s10482-004-6783-xZalarPSybren de HoogGSchroersHJFrankJMGunde-CimermanN.Taxonomy and phylogeny of the xerophilic genus Wallemia (Wallemiomycetes and Wallemiales, cl. et ord. nov.). Antonie Van Leeuwenhoek. 2005;87(4):311–328. https://doi.org/10.1007/s10482-004-6783-xSearch in Google Scholar
Zhang J, Fan B, Zhao L, Zhao C, Yang F. Biochar promotes compost humification by regulating bacterial and fungal communities. Front Microbiol. 2024;15:1470930. https://doi.org/10.3389/fmicb.2024.1470930ZhangJFanBZhaoLZhaoCYangF.Biochar promotes compost humification by regulating bacterial and fungal communities. Front Microbiol. 2024;15:1470930. https://doi.org/10.3389/fmicb.2024.1470930Search in Google Scholar
Zhu L, Huang C, Li L, Wang S, Wu X, Shan G, Tian Y. Innovative insights into organic nitrogen degradation through protein family domains analysis in chicken and pig manure composting using metagenomic sequencing. Bioresour Technol. 2024;406:131048. https://doi.org/10.1016/j.biortech.2024.131048ZhuLHuangCLiLWangSWuXShanGTianY.Innovative insights into organic nitrogen degradation through protein family domains analysis in chicken and pig manure composting using metagenomic sequencing. Bioresour Technol. 2024;406:131048. https://doi.org/10.1016/j.biortech.2024.131048Search in Google Scholar
Zucconi F, Pera A, Forte M, Bertoldi MD. Evaluating toxicity of immature compost. Biocycle, 1981;22:54–57.ZucconiFPeraAForteMBertoldiMD.Evaluating toxicity of immature compost. Biocycle, 1981;22:54–57.Search in Google Scholar