This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Al-Fozan SA, Malik AU. Effect of seawater level on corrosion behavior of different alloys. Desalination. 2008 Aug;228(1-3):61-67. https://doi.org/10.1016/j.desal.2007.08.007Al-FozanSAMalikAU.Effect of seawater level on corrosion behavior of different alloys. Desalination. 2008Aug;228(1-3):61-67. https://doi.org/10.1016/j.desal.2007.08.007Search in Google Scholar
Alotaibi F, Rafie M, Almubarak T, Alomair A. Insights into H2S Scavengers and Corrosion Inhibitor Interactions for Sour Crude Applications. Paper presented at the International Petroleum Technology Conference; 2024 Feb 12; Dhahran (Saudi Arabia). 2024;D021S070R005. https://doi.org/10.2523/iptc-24603-msAlotaibiFRafieMAlmubarakTAlomairA.Insights into H2S Scavengers and Corrosion Inhibitor Interactions for Sour Crude Applications. Paper presented at the International Petroleum Technology Conference; 2024 Feb 12; Dhahran (Saudi Arabia). 2024;D021S070R005. https://doi.org/10.2523/iptc-24603-msSearch in Google Scholar
Ansari TQ, Luo JL, Shi SQ. Modeling the effect of insoluble corrosion products on pitting corrosion kinetics of metals. NPJ Mater Degrad. 2019 Jul;3:28. https://doi.org/10.1038/s41529-019-0090-5AnsariTQLuoJLShiSQ.Modeling the effect of insoluble corrosion products on pitting corrosion kinetics of metals. NPJ Mater Degrad. 2019Jul;3:28. https://doi.org/10.1038/s41529-019-0090-5Search in Google Scholar
ASTM G31-21. Standard guide for laboratory immersion corrosion testing of metals. West Conshohocken (USA): ASTM International; 2021. https://doi.org/10.1520/G0031-21ASTM G31-21. Standard guide for laboratory immersion corrosion testing of metals. West Conshohocken (USA): ASTM International; 2021. https://doi.org/10.1520/G0031-21Search in Google Scholar
Baird RB, Eaton AD, Rice EW. Standard methods for the examination of water and wastewater, 23rd edition. Washington (USA): American Public Health Association; 2017.BairdRBEatonADRiceEW.Standard methods for the examination of water and wastewater, 23rd edition. Washington (USA): American Public Health Association; 2017.Search in Google Scholar
Barberán A, Ladau J, Leff JW, Pollard KS, Menninger HL, Dunn RR, Fierer N. Continental-scale distributions of dust-associated bacteria and fungi. Proc Natl Acad Sci USA. 2015 May;112(18):5756–5761. https://doi.org/10.1073/pnas.1420815112BarberánALadauJLeffJWPollardKSMenningerHLDunnRRFiererN. Continental-scale distributions of dust-associated bacteria and fungi. Proc Natl Acad Sci USA. 2015May;112(18):5756–5761. https://doi.org/10.1073/pnas.1420815112Search in Google Scholar
Beech IB, Sunner J. Biocorrosion: Towards understanding interactions between biofilms and metals. Curr opinion Biotechnol 2004 Jun;15(3):181–186. https://doi.org/10.1016/j.copbio.2004.05.001BeechIBSunnerJ.Biocorrosion: Towards understanding interactions between biofilms and metals. Curr opinion Biotechnol2004Jun;15(3):181–186. https://doi.org/10.1016/j.copbio.2004.05.001Search in Google Scholar
Castaño-González JG, Berrío LF, Echeverría F, Correa E, Zuleta AA. Methods for evaluation of corrosion rate on magnesium alloys: A review. Rev Fac Ing Univ Antioquia. 2024;(112):111–131.https://doi.org/10.17533/udea.redin.20240102Castaño-GonzálezJGBerríoLFEcheverríaFCorreaEZuletaAA.Methods for evaluation of corrosion rate on magnesium alloys: A review. Rev Fac Ing Univ Antioquia. 2024;(112):111–131.https://doi.org/10.17533/udea.redin.20240102Search in Google Scholar
Chang N, Liu K, Zhao Y, Deng Y, Ge H. Inhibition performance and mechanism of poly (citric acid–glutamic acid) on carbon steel corrosion in simulated seawater. Appl. Sci. 2024;14(20):9465. https://doi.org/10.3390/app14209465ChangNLiuKZhaoYDengYGeH. Inhibition performance and mechanism of poly (citric acid–glutamic acid) on carbon steel corrosion in simulated seawater. Appl. Sci. 2024;14(20):9465. https://doi.org/10.3390/app14209465Search in Google Scholar
Chen J, Jia Y, Sun Y, Liu K, Zhou C, Liu C, Li D, Liu G, Zhang C, Yang T, et al. Global marine microbial diversity and its potential in bioprospecting. Nature. 2024 Sep;633(8029):371-379. https://doi. org/10.1038/s41586-024-07891-2ChenJJiaYSunYLiuKZhouCLiuCLiDLiuGZhangCYangTGlobal marine microbial diversity and its potential in bioprospecting. Nature. 2024Sep;633(8029):371-379. https://doi.org/10.1038/s41586-024-07891-2Search in Google Scholar
Chohan IM, Ahmad A, Sallih N, Bheel N, Salilew WM, Almaliki AH. Effect of seawater salinity, pH, and temperature on external corrosion behavior and microhardness of offshore oil and gas pipeline: RSM modelling and optimization. Sci Rep. 2024 Jul;14(1):16543. https://doi.org/10.1038/s41598-024-67463-2ChohanIMAhmadASallihNBheelNSalilewWMAlmalikiAH. Effect of seawater salinity, pH, and temperature on external corrosion behavior and microhardness of offshore oil and gas pipeline: RSM modelling and optimization. Sci Rep. 2024Jul;14(1):16543. https://doi.org/10.1038/s41598-024-67463-2Search in Google Scholar
Chugh B, Singh AK, Thakur S, Pani B, Lgaz H, Chung IM, Jha R, Ebenso EE. Comparative investigation of corrosion-mitigating behavior of thiadiazole-derived bis-schiff bases for mild steel in acid medium: Experimental, theoretical, and surface study. ACS Omega. 2020 Jun;5(23):13503–13520. https://doi.org/10.1021/acsomega.9b04274ChughBSinghAKThakurSPaniBLgazHChungIMJhaREbensoEE. Comparative investigation of corrosion-mitigating behavior of thiadiazole-derived bis-schiff bases for mild steel in acid medium: Experimental, theoretical, and surface study. ACS Omega. 2020Jun;5(23):13503–13520. https://doi.org/10.1021/acsomega.9b04274Search in Google Scholar
Dalmaso GZ, Ferreira D, Vermelho AB. Marine extremophiles: A source of hydrolases for biotechnological applications. Mar Drugs. 2015 Apr;13(4):1925–1965. https://doi.org/10.3390/md13041925DalmasoGZFerreiraDVermelhoAB.Marine extremophiles: A source of hydrolases for biotechnological applications. Mar Drugs. 2015Apr;13(4):1925–1965. https://doi.org/10.3390/md13041925Search in Google Scholar
Dhawan SK, Bhandari H, Ruhi G, Bisht BM, Sambyal P. Corrosion preventive materials and corrosion testing. Boca Raton (USA): CRC Press; 2020. https://doi.org/10.1201/9781315101217DhawanSKBhandariHRuhiGBishtBMSambyalP.Corrosion preventive materials and corrosion testing. Boca Raton (USA): CRC Press; 2020. https://doi.org/10.1201/9781315101217Search in Google Scholar
Dou W, Xu D, Gu T. Biocorrosion caused by microbial biofilms is ubiquitous around us. Microb Biotechnol 2021 May;14(3):803–805. https://doi.org/10.1111/1751-7915.13690DouWXuDGuT.Biocorrosion caused by microbial biofilms is ubiquitous around us. Microb Biotechnol2021May;14(3):803–805. https://doi.org/10.1111/1751-7915.13690Search in Google Scholar
El Ibrahimi B, Berdimurodov E. Chapter 5 – Weight loss technique for corrosion measurements. In: Aslam J, Verma C, Mustansar Hussain C, editors. Electrochemical and analytical techniques for sustainable corrosion monitoring. Amsterdam (The Netherlands): Elsevier; 2023. p. 81–90. https://doi.org/10.1016/B978-0- 443-15783-7.00011-6El IbrahimiBBerdimurodovE.Chapter 5 – Weight loss technique for corrosion measurements. In:AslamJVermaCMustansar HussainC editors. Electrochemical and analytical techniques for sustainable corrosion monitoring. Amsterdam (The Netherlands): Elsevier; 2023. p. 81–90. https://doi.org/10.1016/B978-0-443-15783-7.00011-6Search in Google Scholar
Garrity GM. A new genomics-driven taxonomy of Bacteria and Archaea: Are we there yet? J Clinc Microbiol 2016 Aug;54(8):1956– 1963. https://doi.org/10.1128/jcm.00200-16GarrityGM.A new genomics-driven taxonomy of Bacteria and Archaea: Are we there yet?J Clinc Microbiol2016Aug;54(8):1956– 1963. https://doi.org/10.1128/jcm.00200-16Search in Google Scholar
Ghazaee A, Pour-Ali S, Mahdavi S, Tavangar R, Khalili M. Corrosion inhibition of steel rebar in chloride-contaminated concrete pore solution: Ecofriendly glutamic acid inhibitor and its synergy with galvanized coating. Inorg Chem Commun. 2024 Sep;167:112832. https://doi.org/10.1016/j.inoche.2024.112832GhazaeeAPour-AliSMahdaviSTavangarRKhaliliM.Corrosion inhibition of steel rebar in chloride-contaminated concrete pore solution: Ecofriendly glutamic acid inhibitor and its synergy with galvanized coating. Inorg Chem Commun. 2024Sep;167:112832. https://doi.org/10.1016/j.inoche.2024.112832Search in Google Scholar
Guo Z, Pan S, Liu T, Zhao Q, Wang Y, Guo N, Chang X, Liu T, Dong Y, Yin Y. Bacillus subtilis inhibits Vibrio natriegens-induced corrosion via biomineralization in seawater. Front Microbiol. 2019 May;10:1111. https://doi.org/10.3389/fmicb.2019.01111GuoZPanSLiuTZhaoQWangYGuoNChangXLiuTDongYYinY. Bacillus subtilis inhibits Vibrio natriegens-induced corrosion via biomineralization in seawater. Front Microbiol. 2019May;10:1111. https://doi.org/10.3389/fmicb.2019.01111Search in Google Scholar
Hiraishi A, Nagashima KV, Matsuura K, Shimada K, Takaichi S, Wakao N, Katayama Y. Phylogeny and photosynthetic features of Thiobacillus acidophilus and related acidophilic bacteria: its transfer to the genus Acidiphilium as Acidiphilium acidophilum comb. nov. Int J Syst Bacteriol. 1998 Oct;48(4):1389-1398. https://doi. org/10.1099/00207713-48-4-1389HiraishiANagashimaKVMatsuuraKShimadaKTakaichiSWakaoNKatayamaY.Phylogeny and photosynthetic features of Thiobacillus acidophilus and related acidophilic bacteria: its transfer to the genus Acidiphilium as Acidiphilium acidophilum comb. nov. Int J Syst Bacteriol. 1998Oct;48(4):1389-1398. https://doi.org/10.1099/00207713-48-4-1389Search in Google Scholar
Holkar SK, Bhanbhane VC, Ghotgalkar PS, Markad HN, Lodha TD, Saha S, Banerjee K. Characterization and bioefficacy of grapevine bacterial endophytes against Colletotrichum gloeosporioides causing anthracnose disease. Front Microbiol. 2024 Dec;15:1502788. https://doi.org/10.3389/fmicb.2024.1502788HolkarSKBhanbhaneVCGhotgalkarPSMarkadHNLodhaTDSahaSBanerjeeK.Characterization and bioefficacy of grapevine bacterial endophytes against Colletotrichum gloeosporioides causing anthracnose disease. Front Microbiol. 2024Dec;15:1502788. https://doi.org/10.3389/fmicb.2024.1502788Search in Google Scholar
Hou X, Gao L, Cui Z, Yin J. Corrosion and protection of metal in the seawater desalination. IOP Conf Ser Earth Environ Sci. 2018;108(2):022037. https://doi.org/10.1088/1755- 1315/108/2/022037HouXGaoLCuiZYinJ.Corrosion and protection of metal in the seawater desalination. IOP Conf Ser Earth Environ Sci. 2018;108(2):022037. https://doi.org/10.1088/1755-1315/108/2/022037Search in Google Scholar
Ismail KM, Gehrig T, Jayaraman A, Wood TK, Trandem K, Arps PJ, Earthman JC. Corrosion control of mild steel by aerobic bacteria under continuous flow conditions. Corrosion. 2002 May;58(05):417–423. https://doi.org/10.5006/1.3277631IsmailKMGehrigTJayaramanAWoodTKTrandemKArpsPJEarthmanJC.Corrosion control of mild steel by aerobic bacteria under continuous flow conditions. Corrosion. 2002May;58(05):417–423. https://doi.org/10.5006/1.3277631Search in Google Scholar
Jayaraman A, Cheng ET, Earthman JC, Wood TK. Axenic aerobic biofilms inhibit corrosion of SAE 1018 steel through oxygen depletion. Appl Microbiol Biotechnol. 1997a Jul;48(1):11–17. https://doi.org/10.1007/s002530051007JayaramanAChengETEarthmanJCWoodTK.Axenic aerobic biofilms inhibit corrosion of SAE 1018 steel through oxygen depletion. Appl Microbiol Biotechnol. 1997aJul;48(1):11–17. https://doi.org/10.1007/s002530051007Search in Google Scholar
Jayaraman A, Cheng ET, Earthman JC, Wood TK. Importance of biofilm formation for corrosion inhibition of SAE 1018 steel by axenic aerobic biofilms. J Ind Microbiol Biotechnol. 1997b Jun;18(6):396–401. https://doi.org/10.1038/sj.jim.2900396JayaramanAChengETEarthmanJCWoodTK.Importance of biofilm formation for corrosion inhibition of SAE 1018 steel by axenic aerobic biofilms. J Ind Microbiol Biotechnol. 1997bJun;18(6):396–401. https://doi.org/10.1038/sj.jim.2900396Search in Google Scholar
Jiang Q, Wang S, Zhang C, Sheng Z, Zhang H, Feng R, Ni Y, Tang X, Gu Y, Zhou X, et al. Active oxygen species mediate the iron-promoting electrocatalysis of oxygen evolution reaction on metal oxyhydroxides. Nat Commun. 2023 Oct;14(1):6826. https://doi.org/10.1038/s41467-023-42646-zJiangQWangSZhangCShengZZhangHFengRNiYTangXGuYZhouXActive oxygen species mediate the iron-promoting electrocatalysis of oxygen evolution reaction on metal oxyhydroxides. Nat Commun. 2023Oct;14(1):6826. https://doi.org/10.1038/s41467-023-42646-zSearch in Google Scholar
Karn SK, Fang G, Duan J. Bacillus sp. acting as dual role for corrosion induction and corrosion inhibition with carbon steel (CS). Front Microbiol. 2017 Oct 24;8:2038. https://doi.org/10.3389/fmicb.2017.02038KarnSKFangGDuanJ.Bacillus sp. acting as dual role for corrosion induction and corrosion inhibition with carbon steel (CS). Front Microbiol. 2017Oct24;8:2038. https://doi.org/10.3389/fmicb.2017.02038Search in Google Scholar
Kartsonakis IA, Charitidis CA. Corrosion protection evaluation of mild steel: The role of hybrid materials loaded with inhibitors. Appl Sci. 2020 Sep;10(18):6594. https://doi.org/10.3390/app10186594KartsonakisIACharitidisCA.Corrosion protection evaluation of mild steel: The role of hybrid materials loaded with inhibitors. Appl Sci. 2020Sep;10(18):6594. https://doi.org/10.3390/app10186594Search in Google Scholar
Little BJ, Lee JS. Microbiologically influenced corrosion. In: Revie RW, editor. Oil and gas pipelines, Hoboken (USA): John Wiley & Sons, Inc.; 2015. p. 387–398. https://doi. org/10.1002/9781119019213.ch27LittleBJLeeJS.Microbiologically influenced corrosion. In:RevieRW editor. Oil and gas pipelines, Hoboken (USA): John Wiley & Sons, Inc.; 2015. p. 387–398. https://doi.org/10.1002/9781119019213.ch27Search in Google Scholar
Liu H, Gu T, Lv Y, Asif M, Xiong F, Zhang G, Liu H. Corrosion inhibition and anti-bacterial efficacy of benzalkonium chloride in artificial CO2-saturated oilfield produced water. Corros Sci. 2017 Mar;117:24–34. https://doi.org/10.1016/j.corsci.2017.01.006LiuHGuTLvYAsifMXiongFZhangGLiuH.Corrosion inhibition and anti-bacterial efficacy of benzalkonium chloride in artificial CO2-saturated oilfield produced water. Corros Sci. 2017Mar;117:24–34. https://doi.org/10.1016/j.corsci.2017.01.006Search in Google Scholar
Margesin R, Schinner F. Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles. 2001 Apr;5(2):73–83. https://doi.org/10.1007/s007920100184MargesinRSchinnerF.Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles. 2001Apr;5(2):73–83. https://doi.org/10.1007/s007920100184Search in Google Scholar
Marsili E, Kjelleberg S, Rice SA. Mixed community biofilms and microbially influenced corrosion. Microbiol Aust. 2018 Aug 10;39(3):152–157. https://doi.org/10.1071/MA18046MarsiliEKjellebergSRiceSA.Mixed community biofilms and microbially influenced corrosion. Microbiol Aust. 2018Aug10;39(3):152–157. https://doi.org/10.1071/MA18046Search in Google Scholar
Nagaoka A, Nose K, Nokami K, Kajimura H. The role of micro pits in the initiation process of crevice corrosion of SUS304 stainless steel in an aqueous chloride solution. Mater Trans. 2022 Mar;63(3):335–342. https://doi.org/10.2320/matertrans.mt-c2021007NagaokaANoseKNokamiKKajimuraH. The role of micro pits in the initiation process of crevice corrosion of SUS304 stainless steel in an aqueous chloride solution. Mater Trans. 2022Mar;63(3):335–342. https://doi.org/10.2320/matertrans.mt-c2021007Search in Google Scholar
Pal MK, Lavanya M. Microbial Influenced Corrosion: Understanding bioadhesion and biofilm formation. J Bio Tribo Corros. 2022;8:76. https://doi.org/10.1007/s40735-022-00677-xPalMKLavanyaM.Microbial Influenced Corrosion: Understanding bioadhesion and biofilm formation. J Bio Tribo Corros. 2022;8:76. https://doi.org/10.1007/s40735-022-00677-xSearch in Google Scholar
Patrascu I, Vasilescu E, Gatin E, Cara-Ilici RR. Corrosion of biomaterials used in dental reconstruction dentistry. London (UK): IntechOpen; 2014. https://doi.org/10.5772/57322PatrascuIVasilescuEGatinECara-IliciRR.Corrosion of biomaterials used in dental reconstruction dentistry. London (UK): IntechOpen; 2014. https://doi.org/10.5772/57322Search in Google Scholar
Petersen RB, Melchers RE. Pitting corrosion of mild steel in long-term contact with particulate media in seawater. Corros. 2023 Sep;79(9):1040–1051. https://doi.org/10.5006/4322PetersenRBMelchersRE.Pitting corrosion of mild steel in long-term contact with particulate media in seawater. Corros. 2023Sep;79(9):1040–1051. https://doi.org/10.5006/4322Search in Google Scholar
Potekhina JS, Sherisheva NG, Povetkina LP, Pospelov AP, Rakitina TA, Warnecke F, Gottschalk G. Role of microorganisms in corrosion inhibition of metals in aquatic habitats. Appl Microbiol and Biotechnol. 1999 Nov;52:639–646. https://doi.org/10.1007/s002530051571PotekhinaJSSherishevaNGPovetkinaLPPospelovAPRakitinaTAWarneckeFGottschalkG.Role of microorganisms in corrosion inhibition of metals in aquatic habitats. Appl Microbiol and Biotechnol. 1999Nov;52:639–646. https://doi.org/10.1007/s002530051571Search in Google Scholar
Pradhan P, Tamang JP. Phenotypic and genotypic identification of bacteria isolated from traditionally prepared dry starters of the Eastern Himalayas. Front Microbiol. 2019 Nov;10:2526. https://doi. org/10.3389/fmicb.2019.02526PradhanPTamangJP.Phenotypic and genotypic identification of bacteria isolated from traditionally prepared dry starters of the Eastern Himalayas. Front Microbiol. 2019Nov;10:2526. https://doi.org/10.3389/fmicb.2019.02526Search in Google Scholar
Priyotomo G, Nuraini L, Prifiharni S, Sundjono S. Corrosion behavior of mild steel in seawater from Karangsong & Eretan of West Java Region, Indonesia. Jurnal Kelautan: IJMST. 2018 Dec 28;11(2):184-91. https://doi.org/10.21107/jk.v11i2.4335PriyotomoGNurainiLPrifiharniSSundjonoS.Corrosion behavior of mild steel in seawater from Karangsong & Eretan of West Java Region, Indonesia. Jurnal Kelautan: IJMST. 2018Dec28;11(2):184-91. https://doi.org/10.21107/jk.v11i2.4335Search in Google Scholar
Rajput A, Park JH, Hwan Noh S, Kee Paik J. Fresh and sea water immersion corrosion testing on marine structural steel at low temperature. Sh Offshore Struct. 2020 Jul;15(6):661–669. https://doi.org/10.1080/17445302.2019.1664128RajputAParkJHHwan NohSKee PaikJ. Fresh and sea water immersion corrosion testing on marine structural steel at low temperature. Sh Offshore Struct. 2020Jul;15(6):661–669. https://doi.org/10.1080/17445302.2019.1664128Search in Google Scholar
Răuţă DI, Matei E, Avramescu SM. Recent development of corrosion inhibitors: Types, mechanisms, electrochemical behavior, efficiency, and environmental impact. Technologies. 2025;13(3):103. https://doi.org/10.3390/technologies13030103RăuţăDIMateiEAvramescuSM.Recent development of corrosion inhibitors: Types, mechanisms, electrochemical behavior, efficiency, and environmental impact. Technologies. 2025;13(3):103. https://doi.org/10.3390/technologies13030103Search in Google Scholar
Revie RW, Uhlig HH. Corrosion and corrosion control: an introduction to corrosion science and engineering. Hoboken (USA): John Wiley & Sons, Inc.; 2008. https://doi.org/10.1002/9780470277270RevieRWUhligHH.Corrosion and corrosion control: an introduction to corrosion science and engineering. corrosion science and engineeringHoboken (USA): John Wiley & Sons, Inc.; 2008. https://doi.org/10.1002/9780470277270Search in Google Scholar
Ricky E, Lugwisha E, Philip J. Corrosion inhibition of mild steel in seawater by 2, 4, 6-triamino-3-pentadecylphenyl acetate derived from cashew nut shell liquid. Tanz J Sci. 2021 Feb;47(1):112–122.RickyELugwishaEPhilipJ.Corrosion inhibition of mild steel in seawater by 2, 4, 6-triamino-3-pentadecylphenyl acetate derived from cashew nut shell liquid. Tanz J Sci. 2021Feb;47(1):112–122.Search in Google Scholar
Roberge PR. Corrosion basics: An introduction. Houston (USA): NACE International; 2018. https://doi.org/10.5006/37630RobergePR.Corrosion basics: An introduction. An introductionHouston (USA): NACE International; 2018. https://doi.org/10.5006/37630Search in Google Scholar
Royani A, Hanafi M, Mubarak NM, Priyotomo G, Aigbodion VS, Musabikha S, Manaf A. Unveiling green corrosion inhibitor of Aloe vera extracts for API 5L steel in seawater environment. Sci Rep. 2024 Jun;14(1):14085. https://doi.org/10.1038/s41598-024- 64715-zRoyaniAHanafiMMubarakNMPriyotomoGAigbodionVSMusabikhaSManafA.Unveiling green corrosion inhibitor of Aloe vera extracts for API 5L steel in seawater environment. Sci Rep. 2024Jun;14(1):14085. https://doi.org/10.1038/s41598-024-64715-zSearch in Google Scholar
Shaban MM, El Basiony NM, Radwan AB, El-Katori EE, Abu-Rayyan A, Bahtiti NH, Abdou MM. Electrochemical investigation of c-steel corrosion inhibition, in silico, and sulfate-reducing bacteria investigations using pyrazole derivatives. ACS Omega. 2023 Aug;8(33):30068–30080. https://doi.org/10.1021/acsomega.3c02333ShabanMMEl BasionyNMRadwanABEl-KatoriEEAbu-RayyanABahtitiNHAbdouMM.Electrochemical investigation of c-steel corrosion inhibition, in silico, and sulfate-reducing bacteria investigations using pyrazole derivatives. ACS Omega. 2023Aug;8(33):30068–30080. https://doi.org/10.1021/acsomega.3c02333Search in Google Scholar
Song Y, Jiang G, Chen Y, Zhao P, Tian Y. Effects of chloride ions on corrosion of ductile iron and carbon steel in soil environments. Sci Rep. 2017 Jul;7(1):6865. https://doi.org/10.1038/s41598-017- 07245-1SongYJiangGChenYZhaoPTianY.Effects of chloride ions on corrosion of ductile iron and carbon steel in soil environments. Sci Rep. 2017Jul;7(1):6865. https://doi.org/10.1038/s41598-017-07245-1Search in Google Scholar
Stancu MM. Role of Indigenous bacteria in corrosion of two types of carbon steel. Microorganisms. 2022 Dec;10(12):2451. https://doi.org/10.3390/microorganisms10122451StancuMM.Role of Indigenous bacteria in corrosion of two types of carbon steel. Microorganisms. 2022Dec;10(12):2451. https://doi.org/10.3390/microorganisms10122451Search in Google Scholar
Taheri P, Milošev I, Meeusen M, Kapun B, White P, Kokalj A, Mol A. On the importance of time-resolved electrochemical evaluation in corrosion inhibitor-screening studies. NPJ Mater Degrad. 2020 Apr;4:12. https://doi.org/10.1038/s41529-020-0116-zTaheriPMiloševIMeeusenMKapunBWhitePKokaljAMolA.On the importance of time-resolved electrochemical evaluation in corrosion inhibitor-screening studies. NPJ Mater Degrad. 2020Apr;4:12. https://doi.org/10.1038/s41529-020-0116-zSearch in Google Scholar
Tripathi AK, Thakur P, Saxena P, Rauniyar S, Gopalakrishnan V, Singh RN, Gadhamshetty V, Gnimpieba EZ, Jasthi BK, Sani RK. Gene sets and mechanisms of sulfate-reducing bacteria biofilm formation and quorum sensing with impact on corrosion. Front Microbiol. 2021 Oct;12:754140. https://doi.org/10.3389/fmicb.2021.754140TripathiAKThakurPSaxenaPRauniyarSGopalakrishnanVSinghRNGadhamshettyVGnimpiebaEZJasthiBKSaniRK.Gene sets and mechanisms of sulfate-reducing bacteria biofilm formation and quorum sensing with impact on corrosion. Front Microbiol. 2021Oct;12:754140. https://doi.org/10.3389/fmicb.2021.754140Search in Google Scholar
Umoren SA, Solomon MM, Saji VS. Corrosion inhibitors for sour oilfield environment (H2S corrosion). In: Saji VS, Umoren SA, editors. Corrosion inhibitors in the oil and gas industry. Weinheim (Germany): Wiley-VCH Verlag GmbH & Co. KGaA; 2020. https://doi.org/10.1002/9783527822140.ch8UmorenSASolomonMMSajiVS.Corrosion inhibitors for sour oilfield environment (H2S corrosion). In:SajiVSUmorenSA editors. Corrosion inhibitors in the oil and gas industry. Weinheim (Germany): Wiley-VCH Verlag GmbH & Co. KGaA; 2020. https://doi.org/10.1002/9783527822140.ch8Search in Google Scholar
Vigdorovich V, Tsygankova L, Shel N, Alshikha N. Universalism of inhibitors against hydrogen sulfide and carbon dioxide corrosion of carbon steel. InE3S Web of Conferences 2021;225:05001. https://doi.org/10.1051/e3sconf/202122505001VigdorovichVTsygankovaLShelNAlshikhaN.Universalism of inhibitors against hydrogen sulfide and carbon dioxide corrosion of carbon steel. InE3S Web of Conferences2021;225:05001. https://doi.org/10.1051/e3sconf/202122505001Search in Google Scholar
Vignesh K, Sujithra S, Vajjiravel M, Narenkumar J, Das B, AlSalhi MS, Devanesan S, Rajasekar A, Malik T. Synthesis of novel N-substituted tetrabromophthalic as corrosion inhibitor and its inhibition of microbial influenced corrosion in cooling water system. Sci Rep. 2024 Oct;14(1):25408. https://doi.org/10.1038/s41598- 024-76254-8VigneshKSujithraSVajjiravelMNarenkumarJDasBAlSalhiMSDevanesanSRajasekarAMalikT.Synthesis of novel N-substituted tetrabromophthalic as corrosion inhibitor and its inhibition of microbial influenced corrosion in cooling water system. Sci Rep. 2024Oct;14(1):25408. https://doi.org/10.1038/s41598-024-76254-8Search in Google Scholar
Watkins PG. The corrosion of mild steel in the presence of two isolates of marine sulphate reducing bacteria [PhD Thesis]. Portsmouth (UK): University of Portsmouth; 1998.WatkinsPG.The corrosion of mild steel in the presence of two isolates of marine sulphate reducing bacteria [PhD Thesis]. Portsmouth (UK): University of Portsmouth; 1998.Search in Google Scholar
Xu F, Cha QQ, Zhang YZ, Chen XL. Degradation and utilization of alginate by marine Pseudoalteromonas: A review. Appl Environ Microbiol. 2021 Aug;87(17):e00368-21. https://doi.org/10.1128/aem.00368-21XuFChaQQZhangYZChenXL.Degradation and utilization of alginate by marine Pseudoalteromonas: A review. Appl Environ Microbiol. 2021Aug;87(17):e00368-21. https://doi.org/10.1128/aem.00368-21Search in Google Scholar
Yan X, Kang S, Xu M, Li P. Corrosion product film of a medium-Mn steel exposed to simulated marine splash zone environment. Materials. 2021 Sep;14(19):5652. https://doi.org/10.3390/ma14195652YanXKangSXuMLiP.Corrosion product film of a medium-Mn steel exposed to simulated marine splash zone environment. Materials. 2021Sep;14(19):5652. https://doi.org/10.3390/ma14195652Search in Google Scholar
Yu X, Al-Saadi S, Zhao XL, Raman RS. Electrochemical investigations of steels in seawater sea sand concrete environments. Materials. 2021 Sep;14(19):5713. https://doi.org/10.3390/ma14195713YuXAl-SaadiSZhaoXLRamanRS.Electrochemical investigations of steels in seawater sea sand concrete environments. Materials. 2021Sep;14(19):5713. https://doi.org/10.3390/ma14195713Search in Google Scholar