Cite

Allen SA, Clark W, McCaffery JM, Cai Z, Lanctot A, Slininger PJ, Liu ZL, Gorsich SW. Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae. Biotechnol Biofuels. 2010 Jan;3:2. https://doi.org/10.1186/1754-6834-3-2 Allen SA Clark W McCaffery JM Cai Z Lanctot A Slininger PJ Liu ZL Gorsich SW . Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae . Biotechnol Biofuels . 2010 Jan ; 3 : 2 . https://doi.org/10.1186/1754-6834-3-2 Search in Google Scholar

Almeida JR, Röder A, Modig T, Laadan B, Lidén G, Gorwa-Grauslund MF. NADH- vs NADPH-coupled reduction of 5-hydroxymethyl furfural (HMF) and its implications on product distribution in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2008 Apr;78(6):939–945. https://doi.org/10.1007/s00253-008-1364-y Almeida JR Röder A Modig T Laadan B Lidén G Gorwa-Grauslund MF . NADH- vs NADPH-coupled reduction of 5-hydroxymethyl furfural (HMF) and its implications on product distribution in Saccharomyces cerevisiae . Appl Microbiol Biotechnol . 2008 Apr ; 78 ( 6 ): 939 945 . https://doi.org/10.1007/s00253-008-1364-y Search in Google Scholar

Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11(10):R106. https://doi.org/10.1186/gb-2010-11-10-r106 Anders S Huber W . Differential expression analysis for sequence count data . Genome Biol . 2010 ; 11 ( 10 ): R106 . https://doi.org/10.1186/gb-2010-11-10-r106 Search in Google Scholar

Ask M, Bettiga M, Mapelli V, Olsson L. The influence of HMF and furfural on redox-balance and energy-state of xylose-utilizing Saccharomyces cerevisiae. Biotechnol Biofuels. 2013 Feb;6(1):22. https://doi.org/10.1186/1754-6834-6-22 Ask M Bettiga M Mapelli V Olsson L . The influence of HMF and furfural on redox-balance and energy-state of xylose-utilizing Saccharomyces cerevisiae . Biotechnol Biofuels . 2013 Feb ; 6 ( 1 ): 22 . https://doi.org/10.1186/1754-6834-6-22 Search in Google Scholar

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000 May;25(1):25–29. https://doi.org/10.1038/75556 Ashburner M Ball CA Blake JA Botstein D Butler H Cherry JM Davis AP Dolinski K Dwight SS Eppig JT . Gene ontology: tool for the unification of biology. The Gene Ontology Consortium . Nat Genet . 2000 May ; 25 ( 1 ): 25 29 . https://doi.org/10.1038/75556 Search in Google Scholar

Dong Y, Hu J, Fan L, Chen Q. RNA-Seq-based transcriptomic and metabolomic analysis reveal stress responses and programmed cell death induced by acetic acid in Saccharomyces cerevisiae. Sci Rep. 2017 Feb;7:42659. https://doi.org/10.1038/srep42659 Dong Y Hu J Fan L Chen Q . RNA-Seq-based transcriptomic and metabolomic analysis reveal stress responses and programmed cell death induced by acetic acid in Saccharomyces cerevisiae . Sci Rep . 2017 Feb ; 7 : 42659 . https://doi.org/10.1038/srep42659 Search in Google Scholar

Benatuil L, Perez JM, Belk J, Hsieh CM. An improved yeast transformation method for the generation of very large human antibody libraries. Protein Eng Des Sel. 2010 Apr;23(4):155–159. https://doi.org/10.1093/protein/gzq002 Benatuil L Perez JM Belk J Hsieh CM . An improved yeast transformation method for the generation of very large human antibody libraries . Protein Eng Des Sel . 2010 Apr ; 23 ( 4 ): 155 159 . https://doi.org/10.1093/protein/gzq002 Search in Google Scholar

Chen Y, Sheng J, Jiang T, Stevens J, Feng X, Wei N. Transcriptional profiling reveals molecular basis and novel genetic targets for improved resistance to multiple fermentation inhibitors in Saccharomyces cerevisiae. Biotechnol Biofuels. 2016 Jan;9:9. https://doi.org/10.1186/s13068-015-0418-5 Chen Y Sheng J Jiang T Stevens J Feng X Wei N . Transcriptional profiling reveals molecular basis and novel genetic targets for improved resistance to multiple fermentation inhibitors in Saccharomyces cerevisiae . Biotechnol Biofuels . 2016 Jan ; 9 : 9 . https://doi.org/10.1186/s13068-015-0418-5 Search in Google Scholar

Cunha JT, Aguiar TQ, Romaní A, Oliveira C, Domingues L. Contribution of PRS3, RPB4 and ZWF1 to the resistance of industrial Saccharomyces cerevisiae CCUG53310 and PE-2 strains to lignocellulosic hydrolysate-derived inhibitors. Bioresour Technol. 2015 Sep;191:7–16. https://doi.org/10.1016/j.biortech.2015.05.006 Cunha JT Aguiar TQ Romaní A Oliveira C Domingues L . Contribution of PRS3, RPB4 and ZWF1 to the resistance of industrial Saccharomyces cerevisiae CCUG53310 and PE-2 strains to lignocellulosic hydrolysate-derived inhibitors . Bioresour Technol . 2015 Sep ; 191 : 7 16 . https://doi.org/10.1016/j.biortech.2015.05.006 Search in Google Scholar

De Bhowmick G, Sarmah AK, Sen R. Lignocellulosic biorefinery as a model for sustainable development of biofuels and value added products. Bioresour Technol. 2018 Jan;247:1144–1154. https://doi.org/10.1016/j.biortech.2017.09.163 De Bhowmick G Sarmah AK Sen R . Lignocellulosic biorefinery as a model for sustainable development of biofuels and value added products . Bioresour Technol . 2018 Jan ; 247 : 1144 1154 . https://doi.org/10.1016/j.biortech.2017.09.163 Search in Google Scholar

Florea L, Song L, Salzberg SL. Thousands of exon skipping events differentiate among splicing patterns in sixteen human tissues. F1000Res. 2013 Sep;2:188. https://doi.org/10.12688/f1000research.2-188.v2 Florea L Song L Salzberg SL . Thousands of exon skipping events differentiate among splicing patterns in sixteen human tissues . F1000Res . 2013 Sep ; 2 : 188 . https://doi.org/10.12688/f1000research.2-188.v2 Search in Google Scholar

Gibney PA, Lu C, Caudy AA, Hess DC, Botstein D. Yeast metabolic and signaling genes are required for heat-shock survival and have little overlap with the heat-induced genes. Proc Natl Acad Sci USA. 2013 Nov;110(46):E4393–E4402. https://doi.org/10.1073/pnas.1318100110 Gibney PA Lu C Caudy AA Hess DC Botstein D . Yeast metabolic and signaling genes are required for heat-shock survival and have little overlap with the heat-induced genes . Proc Natl Acad Sci USA . 2013 Nov ; 110 ( 46 ): E4393 E4402 . https://doi.org/10.1073/pnas.1318100110 Search in Google Scholar

Gorsich SW, Dien BS, Nichols NN, Slininger PJ, Liu ZL, Skory CD. Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2006 Jul;71(3):339–349. https://doi.org/10.1007/s00253-005-0142-3 Gorsich SW Dien BS Nichols NN Slininger PJ Liu ZL Skory CD . Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae . Appl Microbiol Biotechnol . 2006 Jul ; 71 ( 3 ): 339 349 . https://doi.org/10.1007/s00253-005-0142-3 Search in Google Scholar

Güldener U, Heck S, Fielder T, Beinhauer J, Hegemann JH. A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res. 1996 Jul;24(13):2519–2524. https://doi.org/10.1093/nar/24.13.2519 Güldener U Heck S Fielder T Beinhauer J Hegemann JH . A new efficient gene disruption cassette for repeated use in budding yeast . Nucleic Acids Res . 1996 Jul ; 24 ( 13 ): 2519 2524 . https://doi.org/10.1093/nar/24.13.2519 Search in Google Scholar

Heer D, Heine D, Sauer U. Resistance of Saccharomyces cerevisiae to high concentrations of furfural is based on NADPH-dependent reduction by at least two oxireductases. Appl Environ Microbiol. 2009 Dec;75(24):7631–7638. https://doi.org/10.1128/AEM.01649-09 Heer D Heine D Sauer U . Resistance of Saccharomyces cerevisiae to high concentrations of furfural is based on NADPH-dependent reduction by at least two oxireductases . Appl Environ Microbiol . 2009 Dec ; 75 ( 24 ): 7631 7638 . https://doi.org/10.1128/AEM.01649-09 Search in Google Scholar

Hermann GJ, Shaw JM. Mitochondrial dynamics in yeast. Annu Rev Cell Dev Biol. 1998;14:265–303. https://doi.org/10.1146/annurev.cellbio.14.1.265 Hermann GJ Shaw JM . Mitochondrial dynamics in yeast . Annu Rev Cell Dev Biol . 1998 ; 14 : 265 303 . https://doi.org/10.1146/annurev.cellbio.14.1.265 Search in Google Scholar

Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome. Nucleic Acids Res. 2004 Jan;32(suppl_1):D277–D280. https://doi.org/10.1093/nar/gkh063 Kanehisa M Goto S Kawashima S Okuno Y Hattori M . The KEGG resource for deciphering the genome . Nucleic Acids Res . 2004 Jan ; 32 (suppl_1): D277 D280 . https://doi.org/10.1093/nar/gkh063 Search in Google Scholar

Kim D, Hahn JS. Roles of the Yap1 transcription factor and antioxidants in Saccharomyces cerevisiae’s tolerance to furfural and 5-hydroxymethylfurfural, which function as thiol-reactive electrophiles generating oxidative stress. Appl Environ Microbiol. 2013 Aug;79(16):5069–5077. https://doi.org/10.1128/AEM.00643-13 Kim D Hahn JS . Roles of the Yap1 transcription factor and antioxidants in Saccharomyces cerevisiae’s tolerance to furfural and 5-hydroxymethylfurfural, which function as thiol-reactive electrophiles generating oxidative stress . Appl Environ Microbiol . 2013 Aug ; 79 ( 16 ): 5069 5077 . https://doi.org/10.1128/AEM.00643-13 Search in Google Scholar

Kumar V, Yadav SK, Kumar J, Ahluwalia V. A critical review on current strategies and trends employed for removal of inhibitors and toxic materials generated during biomass pretreatment. Bioresour Technol. 2020 Mar;299:122633. https://doi.org/10.1016/j.biortech.2019.122633 Kumar V Yadav SK Kumar J Ahluwalia V . A critical review on current strategies and trends employed for removal of inhibitors and toxic materials generated during biomass pretreatment . Bioresour Technol . 2020 Mar ; 299 : 122633 . https://doi.org/10.1016/j.biortech.2019.122633 Search in Google Scholar

Laadan B, Almeida JR, Rådström P, Hahn-Hägerdal B, Gorwa-Grauslund M. Identification of an NADH-dependent 5-hydroxymethylfurfural-reducing alcohol dehydrogenase in Saccharomyces cerevisiae. Yeast. 2008 Mar;25(3):191–198. https://doi.org/10.1002/yea.1578 Laadan B Almeida JR Rådström P Hahn-Hägerdal B Gorwa-Grauslund M . Identification of an NADH-dependent 5-hydroxymethylfurfural-reducing alcohol dehydrogenase in Saccharomyces cerevisiae . Yeast . 2008 Mar ; 25 ( 3 ): 191 198 . https://doi.org/10.1002/yea.1578 Search in Google Scholar

Li X, Yang R, Ma M, Wang X, Tang J, Zhao X, Zhang X. A novel aldehyde reductase encoded by YML131W from Saccharomyces cerevisiae confers tolerance to furfural derived from lignocellulosic biomass conversion. Bioenergy Res. 2015 Jul;8:119–129. https://doi.org/10.1007/s12155-014-9506-9 Li X Yang R Ma M Wang X Tang J Zhao X Zhang X . A novel aldehyde reductase encoded by YML131W from Saccharomyces cerevisiae confers tolerance to furfural derived from lignocellulosic biomass conversion . Bioenergy Res . 2015 Jul ; 8 : 119 129 . https://doi.org/10.1007/s12155-014-9506-9 Search in Google Scholar

Liu ZL, Slininger PJ, Dien BS, Berhow MA, Kurtzman CP, Gorsich SW. Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran. J Ind Microbiol Biotechnol. 2004 Sep;31(8):345–352. https://doi.org/10.1007/s10295-004-0148-3 Liu ZL Slininger PJ Dien BS Berhow MA Kurtzman CP Gorsich SW . Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran . J Ind Microbiol Biotechnol . 2004 Sep ; 31 ( 8 ): 345 352 . https://doi.org/10.1007/s10295-004-0148-3 Search in Google Scholar

Liu ZL, Huang X, Zhou Q, Xu J. Protein expression analysis revealed a fine-tuned mechanism of in situ detoxification pathway for the tolerant industrial yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2019 Jul;103(14):5781–5796. https://doi.org/10.1007/s00253-019-09906-9 Liu ZL Huang X Zhou Q Xu J . Protein expression analysis revealed a fine-tuned mechanism of in situ detoxification pathway for the tolerant industrial yeast Saccharomyces cerevisiae . Appl Microbiol Biotechnol . 2019 Jul ; 103 ( 14 ): 5781 5796 . https://doi.org/10.1007/s00253-019-09906-9 Search in Google Scholar

Liu CG, Li K, Li KY, Sakdaronnarong C, Mehmood MA, Zhao XQ, Bai FW. Intracellular redox perturbation in Saccharomyces cerevisiae improved furfural tolerance and enhanced cellulosic bioethanol production. Front Bioeng Biotechnol. 2020 Jun;8:615. https://doi.org/10.3389/fbioe.2020.00615 Liu CG Li K Li KY Sakdaronnarong C Mehmood MA Zhao XQ Bai FW . Intracellular redox perturbation in Saccharomyces cerevisiae improved furfural tolerance and enhanced cellulosic bioethanol production . Front Bioeng Biotechnol . 2020 Jun ; 8 : 615 . https://doi.org/10.3389/fbioe.2020.00615 Search in Google Scholar

Liu ZL, Ma M. Pathway-based signature transcriptional profiles as tolerance phenotypes for the adapted industrial yeast Saccharomyces cerevisiae resistant to furfural and HMF. Appl Microbiol Biotechnol. 2020 Apr;104(8):3473–3492. https://doi.org/10.1007/s00253-020-10434-0 Liu ZL Ma M . Pathway-based signature transcriptional profiles as tolerance phenotypes for the adapted industrial yeast Saccharomyces cerevisiae resistant to furfural and HMF . Appl Microbiol Biotechnol . 2020 Apr ; 104 ( 8 ): 3473 3492 . https://doi.org/10.1007/s00253-020-10434-0 Search in Google Scholar

Liu ZL, Moon J. A novel NADPH-dependent aldehyde reductase gene from Saccharomyces cerevisiae NRRL Y-12632 involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion. Gene. 2009 Oct;446(1):1–10. https://doi.org/10.1016/j.gene.2009.06.018 Liu ZL Moon J . A novel NADPH-dependent aldehyde reductase gene from Saccharomyces cerevisiae NRRL Y-12632 involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion . Gene . 2009 Oct ; 446 ( 1 ): 1 10 . https://doi.org/10.1016/j.gene.2009.06.018 Search in Google Scholar

Liu ZL, Moon J, Andersh BJ, Slininger PJ, Weber S. Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2008 Dec; 81(4):743–753. https://doi.org/10.1007/s00253-008-1702-0 Liu ZL Moon J Andersh BJ Slininger PJ Weber S . Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae . Appl Microbiol Biotechnol . 2008 Dec ; 81 ( 4 ): 743 753 . https://doi.org/10.1007/s00253-008-1702-0 Search in Google Scholar

Liu ZL. Molecular mechanisms of yeast tolerance and in situ detoxification of lignocellulose hydrolysates. Appl Microbiol Biotechnol. 2011 May;90(3):809–825. https://doi.org/10.1007/s00253-011-3167-9 Liu ZL . Molecular mechanisms of yeast tolerance and in situ detoxification of lignocellulose hydrolysates . Appl Microbiol Biotechnol . 2011 May ; 90 ( 3 ): 809 825 . https://doi.org/10.1007/s00253-011-3167-9 Search in Google Scholar

McDonough VM, Stukey JE, Martin CE. Specificity of unsaturated fatty acid-regulated expression of the Saccharomyces cerevisiae OLE1 gene. J Biol Chem. 1992 Mar;267(9):5931–5936. https://doi.org/10.1016/S0021-9258(18)42644-0 McDonough VM Stukey JE Martin CE . Specificity of unsaturated fatty acid-regulated expression of the Saccharomyces cerevisiae OLE1 gene . J Biol Chem . 1992 Mar ; 267 ( 9 ): 5931 5936 . https://doi.org/10.1016/S0021-9258(18)42644-0 Search in Google Scholar

Moreno AD, Carbone A, Pavone R, Olsson L, Geijer C. Evolutionary engineered Candida intermedia exhibits improved xylose utilization and robustness to lignocellulose-derived inhibitors and ethanol. Appl Microbiol Biotechnol. 2019 Feb;103(3):1405–1416. https://doi.org/10.1007/s00253-018-9528-x Moreno AD Carbone A Pavone R Olsson L Geijer C . Evolutionary engineered Candida intermedia exhibits improved xylose utilization and robustness to lignocellulose-derived inhibitors and ethanol . Appl Microbiol Biotechnol . 2019 Feb ; 103 ( 3 ): 1405 1416 . https://doi.org/10.1007/s00253-018-9528-x Search in Google Scholar

Okazaki S, Tachibana T, Naganuma A, Mano N, Kuge S. Multistep disulfide bond formation in Yap1 is required for sensing and transduction of H2O2 stress signal. Mol Cell. 2007 Aug;27(4):675–688. https://doi.org/10.1016/j.molcel.2007.06.035 Okazaki S Tachibana T Naganuma A Mano N Kuge S . Multistep disulfide bond formation in Yap1 is required for sensing and transduction of H2O2 stress signal . Mol Cell . 2007 Aug ; 27 ( 4 ): 675 688 . https://doi.org/10.1016/j.molcel.2007.06.035 Search in Google Scholar

Ouyang Y, Li Q, Kuang X, Wang H, Wu J, Ayepa E, Chen H, Abrha GT, Zhang Z, Li X, et al. YMR152W from Saccharomyces cerevisiae encoding a novel aldehyde reductase for detoxification of aldehydes derived from lignocellulosic biomass. J Biosci Bioeng. 2021 Jan;131(1):39–46. https://doi.org/10.1016/j.jbiosc.2020.09.004 Ouyang Y Li Q Kuang X Wang H Wu J Ayepa E Chen H Abrha GT Zhang Z Li X . YMR152W from Saccharomyces cerevisiae encoding a novel aldehyde reductase for detoxification of aldehydes derived from lignocellulosic biomass . J Biosci Bioeng . 2021 Jan ; 131 ( 1 ): 39 46 . https://doi.org/10.1016/j.jbiosc.2020.09.004 Search in Google Scholar

Padmapriya G, Dhivya V, Vishal M, Roshni Y, Akila T, Ramalingam S. Development of tolerance to aldehyde-based inhibitors of pretreated lignocellulosic biomass sugars in E. coli MG1655 by sequential batch adaptive evolution. J Environ Biol. 2021 Sep; 42:1239–1248. https://doi.org/10.22438/jeb/42/5/MRN-1812 Padmapriya G Dhivya V Vishal M Roshni Y Akila T Ramalingam S . Development of tolerance to aldehyde-based inhibitors of pretreated lignocellulosic biomass sugars in E. coli MG1655 by sequential batch adaptive evolution . J Environ Biol . 2021 Sep ; 42 : 1239 1248 . https://doi.org/10.22438/jeb/42/5/MRN-1812 Search in Google Scholar

Park SE, Koo HM, Park YK, Park SM, Park JC, Lee OK, Park YC, Seo JH. Expression of aldehyde dehydrogenase 6 reduces inhibitory effect of furan derivatives on cell growth and ethanol production in Saccharomyces cerevisiae. Bioresour Technol. 2011 May;102(10): 6033–6038. https://doi.org/10.1016/j.biortech.2011.02.101 Park SE Koo HM Park YK Park SM Park JC Lee OK Park YC Seo JH . Expression of aldehyde dehydrogenase 6 reduces inhibitory effect of furan derivatives on cell growth and ethanol production in Saccharomyces cerevisiae . Bioresour Technol . 2011 May ; 102 ( 10 ): 6033 6038 . https://doi.org/10.1016/j.biortech.2011.02.101 Search in Google Scholar

Patel AK, Singhania RR, Sim SJ, Pandey A. Thermostable cellulases: Current status and perspectives. Bioresour Technol. 2019 May; 279:385–392. https://doi.org/10.1016/j.biortech.2019.01.049 Patel AK Singhania RR Sim SJ Pandey A . Thermostable cellulases: Current status and perspectives . Bioresour Technol . 2019 May ; 279 : 385 392 . https://doi.org/10.1016/j.biortech.2019.01.049 Search in Google Scholar

Petersson A, Almeida JR, Modig T, Karhumaa K, Hahn-Hägerdal B, Gorwa-Grauslund MF, Lidén G. A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance. Yeast. 2006 Apr 30;23(6):455–464. https://doi.org/10.1002/yea.1370 Petersson A Almeida JR Modig T Karhumaa K Hahn-Hägerdal B Gorwa-Grauslund MF Lidén G . A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance . Yeast . 2006 Apr 30 ; 23 ( 6 ): 455 464 . https://doi.org/10.1002/yea.1370 Search in Google Scholar

Rowe LA, Degtyareva N, Doetsch PW. DNA damage-induced reactive oxygen species (ROS) stress response in Saccharomyces cerevisiae. Free Radic Biol Med. 2008 Oct;45(8):1167–1177. https://doi.org/10.1016/j.freeradbiomed.2008.07.018 Rowe LA Degtyareva N Doetsch PW . DNA damage-induced reactive oxygen species (ROS) stress response in Saccharomyces cerevisiae . Free Radic Biol Med . 2008 Oct ; 45 ( 8 ): 1167 1177 . https://doi.org/10.1016/j.freeradbiomed.2008.07.018 Search in Google Scholar

Sankaran R, Parra Cruz RA, Pakalapati H, Show PL, Ling TC, Chen WH, Tao Y. Recent advances in the pretreatment of micro-algal and lignocellulosic biomass: A comprehensive review. Bioresour Technol. 2020 Feb;298:122476. https://doi.org/10.1016/j.biortech.2019.122476 Sankaran R Parra Cruz RA Pakalapati H Show PL Ling TC Chen WH Tao Y . Recent advances in the pretreatment of micro-algal and lignocellulosic biomass: A comprehensive review . Bioresour Technol . 2020 Feb ; 298 : 122476 . https://doi.org/10.1016/j.biortech.2019.122476 Search in Google Scholar

Singh JK, Vyas P, Dubey A, Upadhyaya CP, Kothari R, Tyagi VV, Kumar A. Assessment of different pretreatment technologies for efficient bioconversion of lignocellulose to ethanol. Front Biosci. 2018 Jun;10(2):350–371. https://doi.org/10.2741/S521 Singh JK Vyas P Dubey A Upadhyaya CP Kothari R Tyagi VV Kumar A . Assessment of different pretreatment technologies for efficient bioconversion of lignocellulose to ethanol . Front Biosci . 2018 Jun ; 10 ( 2 ): 350 371 . https://doi.org/10.2741/S521 Search in Google Scholar

Teixeira MC, Monteiro PT, Guerreiro JF, Gonçalves JP, Mira NP, dos Santos SC, Cabrito TR, Palma M, Costa C, Francisco AP, et al. The YEASTRACT database: an upgraded information system for the analysis of gene and genomic transcription regulation in Saccharomyces cerevisiae. Nucleic Acids Res. 2014 Jan;42(D1):D161–D166. https://doi.org/10.1093/nar/gkt1015 Teixeira MC Monteiro PT Guerreiro JF Gonçalves JP Mira NP dos Santos SC Cabrito TR Palma M Costa C Francisco AP . The YEASTRACT database: an upgraded information system for the analysis of gene and genomic transcription regulation in Saccharomyces cerevisiae . Nucleic Acids Res . 2014 Jan ; 42 ( D1 ): D161 D166 . https://doi.org/10.1093/nar/gkt1015 Search in Google Scholar

Teixeira MC, Raposo LR, Mira NP, Lourenço AB, Sá-Correia I. Genome-wide identification of Saccharomyces cerevisiae genes required for maximal tolerance to ethanol. Appl Environ Microbiol. 2009 Sep;75(18):5761–5772. https://doi.org/10.1128/AEM.00845-09 Teixeira MC Raposo LR Mira NP Lourenço AB Sá-Correia I . Genome-wide identification of Saccharomyces cerevisiae genes required for maximal tolerance to ethanol . Appl Environ Microbiol . 2009 Sep ; 75 ( 18 ): 5761 5772 . https://doi.org/10.1128/AEM.00845-09 Search in Google Scholar

Terashima H, Yabuki N, Arisawa M, Hamada K, Kitada K. Up-regulation of genes encoding glycosylphosphatidylinositol (GPI)-attached proteins in response to cell wall damage caused by disruption of FKS1 in Saccharomyces cerevisiae. Mol Gen Genet. 2000 Sep;264(1–2):64–74. https://doi.org/10.1007/s004380000285 Terashima H Yabuki N Arisawa M Hamada K Kitada K . Up-regulation of genes encoding glycosylphosphatidylinositol (GPI)-attached proteins in response to cell wall damage caused by disruption of FKS1 in Saccharomyces cerevisiae . Mol Gen Genet . 2000 Sep ; 264 ( 1–2 ): 64 74 . https://doi.org/10.1007/s004380000285 Search in Google Scholar

Thompson OA, Hawkins GM, Gorsich SW, Doran-Peterson J. Phenotypic characterization and comparative transcriptomics of evolved Saccharomyces cerevisiae strains with improved tolerance to lignocellulosic derived inhibitors. Biotechnol Biofuels. 2016 Sep; 9:200. https://doi.org/10.1186/s13068-016-0614-y Thompson OA Hawkins GM Gorsich SW Doran-Peterson J . Phenotypic characterization and comparative transcriptomics of evolved Saccharomyces cerevisiae strains with improved tolerance to lignocellulosic derived inhibitors . Biotechnol Biofuels . 2016 Sep ; 9 : 200 . https://doi.org/10.1186/s13068-016-0614-y Search in Google Scholar

Toone WM, Jones N. AP-1 transcription factors in yeast. Curr Opin Genet Dev. 1999 Feb;9(1):55–61. https://doi.org/10.1016/S0959-437X(99)80008-2 Toone WM Jones N . AP-1 transcription factors in yeast . Curr Opin Genet Dev . 1999 Feb ; 9 ( 1 ): 55 61 . https://doi.org/10.1016/S0959-437X(99)80008-2 Search in Google Scholar

Unrean P, Gätgens J, Klein B, Noack S, Champreda V. Elucidating cellular mechanisms of Saccharomyces cerevisiae tolerant to combined lignocellulosic-derived inhibitors using high-throughput phenotyping and multiomics analyses. FEMS Yeast Res. 2018 Dec;18(8):foy106. https://doi.org/10.1093/femsyr/foy106 Unrean P Gätgens J Klein B Noack S Champreda V . Elucidating cellular mechanisms of Saccharomyces cerevisiae tolerant to combined lignocellulosic-derived inhibitors using high-throughput phenotyping and multiomics analyses . FEMS Yeast Res . 2018 Dec ; 18 ( 8 ): foy106 . https://doi.org/10.1093/femsyr/foy106 Search in Google Scholar

Wang HY, Xiao DF, Zhou C, Wang LL, Wu L, Lu YT, Xiang QJ, Zhao K, Li X, Ma MG. YLL056C from Saccharomyces cerevisiae encodes a novel protein with aldehyde reductase activity. Appl Microbiol Biotechnol. 2017a Jun;101(11):4507–4520. https://doi.org/10.1007/s00253-017-8209-5 Wang HY Xiao DF Zhou C Wang LL Wu L Lu YT Xiang QJ Zhao K Li X Ma MG . YLL056C from Saccharomyces cerevisiae encodes a novel protein with aldehyde reductase activity . Appl Microbiol Biotechnol . 2017a Jun ; 101 ( 11 ): 4507 4520 . https://doi.org/10.1007/s00253-017-8209-5 Search in Google Scholar

Wang H, Li Q, Peng Y, Zhang Z, Kuang X, Hu X, Ayepa E, Han X, Abrha GT, Xiang Q, et al. Cellular analysis and comparative transcriptomics reveal the tolerance mechanisms of Candida tropicalis toward phenol. Front Microbiol. 2020 Apr;11:544. https://doi.org/10.3389/fmicb.2020.00544 Wang H Li Q Peng Y Zhang Z Kuang X Hu X Ayepa E Han X Abrha GT Xiang Q . Cellular analysis and comparative transcriptomics reveal the tolerance mechanisms of Candida tropicalis toward phenol . Front Microbiol . 2020 Apr ; 11 : 544 . https://doi.org/10.3389/fmicb.2020.00544 Search in Google Scholar

Wang H, Ouyang Y, Zhou C, Xiao D, Guo Y, Wu L, Li X, Gu Y, Xiang Q, Zhao K, et al. YKL071W from Saccharomyces cerevisiae encodes a novel aldehyde reductase for detoxification of glycolaldehyde and furfural derived from lignocellulose. Appl Microbiol Biotechnol. 2017b Dec;101(23–24):8405–8418. https://doi.org/10.1007/s00253-017-8567-z Wang H Ouyang Y Zhou C Xiao D Guo Y Wu L Li X Gu Y Xiang Q Zhao K . YKL071W from Saccharomyces cerevisiae encodes a novel aldehyde reductase for detoxification of glycolaldehyde and furfural derived from lignocellulose . Appl Microbiol Biotechnol . 2017b Dec ; 101 ( 23–24 ): 8405 8418 . https://doi.org/10.1007/s00253-017-8567-z Search in Google Scholar

Wang L, Qi A, Liu J, Shen Y, Wang J. Comparative metabolic analysis of the adaptive Candida tropicalis to furfural stress response. Chem Eng Sci. 2023 Mar;267:118348. https://doi.org/10.1016/j.ces.2022.118348 Wang L Qi A Liu J Shen Y Wang J . Comparative metabolic analysis of the adaptive Candida tropicalis to furfural stress response . Chem Eng Sci . 2023 Mar ; 267 : 118348 . https://doi.org/10.1016/j.ces.2022.118348 Search in Google Scholar

Zhao X, Tang J, Wang X, Yang R, Zhang X, Gu Y, Li X, Ma M. YNL134C from Saccharomyces cerevisiae encodes a novel protein with aldehyde reductase activity for detoxification of furfural derived from lignocellulosic biomass. Yeast. 2015 May;32(5):409–422. https://doi.org/10.1002/yea.3068 Zhao X Tang J Wang X Yang R Zhang X Gu Y Li X Ma M . YNL134C from Saccharomyces cerevisiae encodes a novel protein with aldehyde reductase activity for detoxification of furfural derived from lignocellulosic biomass . Yeast . 2015 May ; 32 ( 5 ): 409 422 . https://doi.org/10.1002/yea.3068 Search in Google Scholar

Zhu L, Li P, Sun T, Kong M, Li X, Ali S, Liu W, Fan S, Qiao J, Li S., et al. Overexpression of SFA1 in engineered Saccharomyces cerevisiae to increase xylose utilization and ethanol production from different lignocellulose hydrolysates. Bioresour Technol. 2020 Oct;313:123724. https://doi.org/10.1016/j.biortech.2020.123724 Zhu L Li P Sun T Kong M Li X Ali S Liu W Fan S Qiao J Li S . Overexpression of SFA1 in engineered Saccharomyces cerevisiae to increase xylose utilization and ethanol production from different lignocellulose hydrolysates . Bioresour Technol . 2020 Oct ; 313 : 123724 . https://doi.org/10.1016/j.biortech.2020.123724 Search in Google Scholar

eISSN:
2544-4646
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Life Sciences, Microbiology and Virology