Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural UniversityHohhot, P.R.China
Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural UniversityHohhot, P.R.China
Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural UniversityHohhot, P.R.China
Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural UniversityHohhot, P.R.China
Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural UniversityHohhot, P.R.China
Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural UniversityHohhot, P.R.China
Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural UniversityHohhot, P.R.China
Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural UniversityHohhot, P.R.China
Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural UniversityHohhot, P.R.China
Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural UniversityHohhot, P.R.China
Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural UniversityHohhot, P.R.China
Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural UniversityHohhot, P.R.China
Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural UniversityHohhot, P.R.China
Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural UniversityHohhot, P.R.China
Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural UniversityHohhot, P.R.China
Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural UniversityHohhot, P.R.China
Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural UniversityHohhot, P.R.China
Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural UniversityHohhot, P.R.China
Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural UniversityHohhot, P.R.China
Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural UniversityHohhot, P.R.China
Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural UniversityHohhot, P.R.China
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Binetti AG, Quiberoni A, Reinheimer JA. Phage adsorption to Streptococcus thermophilus. Influence of environmental factors and characterization of cell-receptors. Food Res Int. 2002;35(1):73–83. https://doi.org/10.1016/S0963-9969(01)00121-1BinettiAGQuiberoniAReinheimerJAPhage adsorption to Streptococcus thermophilusInfluence of environmental factors and characterization of cell-receptors. Food Res Int20023517383https://doi.org/10.1016/S0963-9969(01)00121-110.1016/S0963-9969(01)00121-1Search in Google Scholar
Briggiler Marcó M, Garneau JE, Tremblay D, Quiberoni A, Moineau S. Characterization of two virulent phages of Lactobacillus plantarum. Appl Enviro Microbiol. 2012;78(24):8719. https://doi.org/10.1128/aem.02565-12BriggilerMarcó MGarneauJETremblayDQuiberoniAMoineauSCharacterization of two virulent phages of Lactobacillus plantarumAppl Enviro Microbiol201278248719https://doi.org/10.1128/aem.02565-1210.1128/AEM.02565-12Search in Google Scholar
Bzikadze AV, Pevzner PA. Automated assembly of centromeres from ultra-long error-prone reads. Nat Biotechnol. 2020;38(11):1309–1316. https://doi.org/10.1038/s41587-020-0582-4BzikadzeAVPevznerPAAutomated assembly of centromeres from ultra-long error-prone readsNat Biotechnol2020381113091316https://doi.org/10.1038/s41587-020-0582-410.1038/s41587-020-0582-4Search in Google Scholar
Cao Y, Li S, Wang D, Zhao J, Xu L, Liu H, Lu T, Mou Z. Genomic characterization of a novel virulent phage infecting the Aeromonas hydrophila isolated from rainbow trout (Oncorhynchus mykiss). Virus Res. 2019;273:197764. https://doi.org/10.1016/j.virusres.2019.197764CaoYLiSWangDZhaoJXuLLiuHLuTMouZGenomic characterization of a novel virulent phage infecting the Aeromonas hydrophila isolated from rainbow trout (Oncorhynchus mykiss)Virus Res2019273197764https://doi.org/10.1016/j.virusres.2019.19776410.1016/j.virusres.2019.197764Search in Google Scholar
Capra ML, Quiberoni ADL, Ackermann HW, Moineau S, Reinheimer JA. Characterization of a new virulent phage (MLC-A) of Lactobacillus paracasei. J Dairy Sci. 2006;89(7):2414–2423. https://doi.org/10.3168/jds.S0022-0302(06)72314-1CapraMLQuiberoniADLAckermannHWMoineauSReinheimerJACharacterization of a new virulent phage (MLC-A) of Lactobacillus paracaseiJ Dairy Sci200689724142423https://doi.org/10.3168/jds.S0022-0302(06)72314-110.3168/jds.S0022-0302(06)72314-1Search in Google Scholar
Chen X, Guo J, Liu Y, Chai S, Ma R, Munguntsetseg B. Characterization and adsorption of a Lactobacillus plantarum virulent phage. J Dairy Sci. 2019;102(5):3879–3886. https://doi.org/10.3168/jds.2018-16019ChenXGuoJLiuYChaiSMaRMunguntsetsegBCharacterization and adsorption of a Lactobacillus plantarum virulent phageJ Dairy Sci2019102538793886https://doi.org/10.3168/jds.2018-1601910.3168/jds.2018-1601930852005Search in Google Scholar
Deng Z, Xia X, Deng Y, Zhao M, Gu C, Geng Y, Wang J, Yang Q, He M, Xiao Q, et al. ANI analysis of poxvirus genomes reveals its potential application to viral species rank demarcation. Virus Evol. 2022; 8(1):veac031. https://doi.org/10.1093/ve/veac031DengZXiaXDengYZhaoMGuCGengYWangJYangQHeMXiaoQet alANI analysis of poxvirus genomes reveals its potential application to viral species rank demarcationVirus Evol202281veac031https://doi.org/10.1093/ve/veac03110.1093/ve/veac031907157335646390Search in Google Scholar
Gherlan GS. Occult hepatitis B – The result of the host immune response interaction with different genomic expressions of the virus. World J Clin Cases. 2022;10(17):5518–5530. https://doi.org/10.12998/wjcc.v10.i17.5518GherlanGSOccult hepatitis B – The result of the host immune response interaction with different genomic expressions of the virusWorld J Clin Cases2022101755185530https://doi.org/10.12998/wjcc.v10.i17.551810.12998/wjcc.v10.i17.5518925838135979101Search in Google Scholar
Grose JH, Jensen GL, Burnett SH, Breakwell DP. Genomic comparison of 93 Bacillus phages reveals 12 clusters, 14 singletons and remarkable diversity. BMC Genomics. 2014;15(1):855. https://doi.org/10.1186/1471-2164-15-855GroseJHJensenGLBurnettSHBreakwellDPGenomic comparison of 93 Bacillus phages reveals 12 clusters, 14 singletons and remarkable diversityBMC Genomics2014151855https://doi.org/10.1186/1471-2164-15-85510.1186/1471-2164-15-855419732925280881Search in Google Scholar
Jamal M, Bukhari SMAUS, Andleeb S, Ali M, Raza S, Nawaz MA, Hussain T, Rahman SU, Shah SSA. Bacteriophages: An overview of the control strategies against multiple bacterial infections in different fields. J Basic Microbiol. 2019;59(2):123–133. https://doi.org/10.1002/jobm.201800412JamalMBukhariSMAUSAndleebSAliMRazaSNawazMAHussainTRahmanSUShahSSABacteriophages: An overview of the control strategies against multiple bacterial infections in different fieldsJ Basic Microbiol2019592123133https://doi.org/10.1002/jobm.20180041210.1002/jobm.20180041230485461Search in Google Scholar
Jaomanjaka F, Claisse O, Blanche-Barbat M, Petrel M, Ballestra P, Marrec LC. Characterization of a new virulent phage infecting the lactic acid bacterium Oenococcus oeni. Food Microbiol. 2016; 54:167–177. https://doi.org/10.1016/j.fm.2015.09.016JaomanjakaFClaisseOBlanche-BarbatMPetrelMBallestraPMarrecLCCharacterization of a new virulent phage infecting the lactic acid bacterium Oenococcus oeniFood Microbiol201654167177https://doi.org/10.1016/j.fm.2015.09.01610.1016/j.fm.2015.09.016Search in Google Scholar
Khalil R, Frank JF, Hassan AN, Omar SH. Inhibition of phage infection in capsule producing Streptococcus thermophilus using concanavalin A, lysozyme and saccharides. Afr J Biotechnol. 2007; 6(19): 2280–2286. https://doi.org/10.5897/ajb2007.000-2357KhalilRFrankJFHassanANOmarSHInhibition of phage infection in capsule producing Streptococcus thermophilus using concanavalin A, lysozyme and saccharidesAfr J Biotechnol200761922802286https://doi.org/10.5897/ajb2007.000-235710.5897/AJB2007.000-2357Search in Google Scholar
Kolmogorov M, Yuan J, Lin Y, Pevzner P. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol. 2019;37(5):540-546. https://doi.org/10.1038/s41587-019-0072-8KolmogorovMYuanJLinYPevznerPAssembly of long, error-prone reads using repeat graphsNat Biotechnol2019375540546https://doi.org/10.1038/s41587-019-0072-810.1038/s41587-019-0072-830936562Search in Google Scholar
Korniienko N, Kharina A, Zrelovs N, Jindřichová B, Moravec T, Budzanivska I, Burketová L, Kalachova T. Isolation and characterization of two lytic phages efficient against phytopathogenic bacteria from Pseudomonas and Xanthomonas genera. Front Microbiol. 2022;13:853593. https://doi.org/10.3389/fmicb.2022.853593KorniienkoNKharinaAZrelovsNJindřichováBMoravecTBudzanivskaIBurketováLKalachovaTIsolation and characterization of two lytic phages efficient against phytopathogenic bacteria from Pseudomonas and Xanthomonas generaFront Microbiol202213853593https://doi.org/10.3389/fmicb.2022.85359310.3389/fmicb.2022.853593908341435547140Search in Google Scholar
Kortright KE, Chan BK, Koff JL, Turner PE. Phage therapy: A renewed approach to combat antibiotic-resistant bacteria. Cell Host Microbe. 2019;25(2):219–232. https://doi.org/10.1016/j.chom.2019.01.014KortrightKEChanBKKoffJLTurnerPEPhage therapy: A renewed approach to combat antibiotic-resistant bacteriaCell Host Microbe2019252219232https://doi.org/10.1016/j.chom.2019.01.01410.1016/j.chom.2019.01.01430763536Search in Google Scholar
Leach DR, Stahl FW. Viability of λ phages carrying a perfect palindrome in the absence of recombination nucleases. Nature. 1983; 305(5933): 448–451. https://doi.org/10.1038/305448a0LeachDRStahlFWViability of λ phages carrying a perfect palindrome in the absence of recombination nucleasesNature19833055933448451https://doi.org/10.1038/305448a010.1038/305448a06312322Search in Google Scholar
Lee JB, Hite RK, Hamdan SM, Xie XS, Richardson CC, van Oijen AM. DNA primase acts as a molecular brake in DNA replication. Nature. 2006;439(7076):621–624. https://doi.org/10.1038/nature04317LeeJBHiteRKHamdanSMXieXSRichardsonCCvanOijen AMDNA primase acts as a molecular brake in DNA replicationNature20064397076621624https://doi.org/10.1038/nature0431710.1038/nature0431716452983Search in Google Scholar
Lu H, Yan P, Xiong W, Wang J, Liu X. Genomic characterization of a novel virulent phage infecting Shigella fiexneri and isolated from sewage. Virus Res. 2020;283:197983. https://doi.org/10.1016/j.virusres.2020.197983LuHYanPXiongWWangJLiuXGenomic characterization of a novel virulent phage infecting Shigella fiexneri and isolated from sewageVirus Res2020283197983https://doi.org/10.1016/j.virusres.2020.19798310.1016/j.virusres.2020.19798332325115Search in Google Scholar
Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience. 2012; 1(1):18. https://doi.org/10.1186/2047-217X-1-18LuoRLiuBXieYLiZHuangWYuanJHeGChenYPanQLiuYet alSOAPdenovo2: an empirically improved memory-efficient short-read de novo assemblerGigascience20121118https://doi.org/10.1186/2047-217X-1-1810.1186/2047-217X-1-18362652923587118Search in Google Scholar
Ma C, Chen Z, Gong G, Huang L, Li S, Ma A. Starter culture design to overcome phage infection during yogurt fermentation. Food Sci Biotechnol. 2015;24:521–527. https://doi.org/10.1007/s10068-015-0068-1MaCChenZGongGHuangLLiSMaAStarter culture design to overcome phage infection during yogurt fermentationFood Sci Biotechnol201524521527https://doi.org/10.1007/s10068-015-0068-110.1007/s10068-015-0068-1Search in Google Scholar
Mancini A, Rodriguez MC, Zago M, Cologna N, Goss A, Carafa I, Tuohy K, Merz A, Franciosi E. Massive survey on bacterial-bacteriophages biodiversity and quality of natural whey starter cultures in Trentingrana cheese production. Front Microbiol. 2021;12:678012. https://doi.org/10.3389/fmicb.2021.678012ManciniARodriguezMCZagoMColognaNGossACarafaITuohyKMerzAFranciosiEMassive survey on bacterial-bacteriophages biodiversity and quality of natural whey starter cultures in Trentingrana cheese productionFront Microbiol202112678012https://doi.org/10.3389/fmicb.2021.67801210.3389/fmicb.2021.678012Search in Google Scholar
Mastura A, Stelios V, Kyle C, Phillip K, Francisco DG. Isolation, characterization and evaluation of virulent bacteriophages against Listeria monocytogenes. Food Control. 2017;75:108–115. https://doi.org/10.1016/j.foodcont.2016.12.035MasturaASteliosVKyleCPhillipKFranciscoDGIsolation, characterization and evaluation of virulent bacteriophages against Listeria monocytogenesFood Control201775108115https://doi.org/10.1016/j.foodcont.2016.12.03510.1016/j.foodcont.2016.12.035Search in Google Scholar
Maxwell KL, Yee AA, Arrowsmith CH, Gold M, Davidson AR. The solution structure of the bacteriophage λ head-tail joining protein, gpFII. J Mol Biol. 2002;318(5):1395–1404. https://doi.org/10.1016/s0022-2836(02)00276-0MaxwellKLYeeAAArrowsmithCHGoldMDavidsonARThe solution structure of the bacteriophage λ head-tail joining protein, gpFIIJ Mol Biol2002318513951404https://doi.org/10.1016/s0022-2836(02)00276-010.1016/S0022-2836(02)00276-0Search in Google Scholar
Moodley S, Maxwell KL, Kanelis V. The protein gp74 from the bacteriophage HK97 functions as a HNH endonuclease. Protein Sci. 2012;21(6):809–818. https://doi.org/10.1002/pro.2064MoodleySMaxwellKLKanelisVThe protein gp74 from the bacteriophage HK97 functions as a HNH endonucleaseProtein Sci2012216809818https://doi.org/10.1002/pro.206410.1002/pro.2064Search in Google Scholar
Neviani E, Carminati D, Giraffa G. Selection of some bacteriophage and lysozyme-resistant variants of Lactobacillus helveticus CNRZ 892. J Dairy Sci. 1992;75(4):905–913. https://doi.org/10.3168/jds.S0022-0302(92)77830-8NevianiECarminatiDGiraffaGSelection of some bacteriophage and lysozyme-resistant variants of Lactobacillus helveticus CNRZ 892J Dairy Sci1992754905913https://doi.org/10.3168/jds.S0022-0302(92)77830-810.3168/jds.S0022-0302(92)77830-8Search in Google Scholar
Ofir G, Sorek R. Contemporary phage biology: From classic models to new insights. Cell. 2018;172(6):1260–1270. https://doi.org/10.1016/j.cell.2017.10.045OfirGSorekRContemporary phage biology: From classic models to new insightsCell2018172612601270https://doi.org/10.1016/j.cell.2017.10.04510.1016/j.cell.2017.10.04529522746Search in Google Scholar
Pell LG, Kanelis V, Donaldson LW, Howell PL, Davidson AR. The phage λ major tail protein structure reveals a common evolution for long-tailed phages and the type VI bacterial secretion system. Proc Natl Acad Sci USA. 2009;106(11):4160–4165. https://doi.org/10.1073/pnas.0900044106PellLGKanelisVDonaldsonLWHowellPLDavidsonARThe phage λ major tail protein structure reveals a common evolution for long-tailed phages and the type VI bacterial secretion systemProc Natl Acad Sci USA20091061141604165https://doi.org/10.1073/pnas.090004410610.1073/pnas.0900044106265742519251647Search in Google Scholar
Quiberoni A, Guglielmotti D, Binetti A, Reinheimer J. Characterization of three Lactobacillus delbrueckii subsp. bulgaricus phages and the physicochemical analysis of phage adsorption. J Appl Microbiol. 2004;96(2):340–351. https://doi.org/10.1046/j.1365-2672.2003.02147.xQuiberoniAGuglielmottiDBinettiAReinheimerJCharacterization of three Lactobacillus delbrueckii subspbulgaricus phages and the physicochemical analysis of phage adsorption. J Appl Microbiol2004962340351https://doi.org/10.1046/j.1365-2672.2003.02147.x10.1046/j.1365-2672.2003.02147.x14723695Search in Google Scholar
Quiberoni A, Reinheimer JA. Physicochemical characterization of phage adsorption to Lactobacillus helveticus ATCC 15807 cells. J Appl Microbiol. 1998;85(4):762–768. https://doi.org/10.1111/j.1365-2672.1998.00591.xQuiberoniAReinheimerJAPhysicochemical characterization of phage adsorption to Lactobacillus helveticus ATCC 15807 cellsJ Appl Microbiol1998854762768https://doi.org/10.1111/j.1365-2672.1998.00591.x10.1111/j.1365-2672.1998.00591.xSearch in Google Scholar
Quiberoni A, Stiefel JI, Reinheimer JA. Characterization of phage receptors in Streptococcus thermophilus using purified cell walls obtained by a simple protocol. J Appl Microbiol. 2000; 89(6): 1059–1065. https://doi.org/10.1046/j.1365-2672.2000.01214.xQuiberoniAStiefelJIReinheimerJACharacterization of phage receptors in Streptococcus thermophilus using purified cell walls obtained by a simple protocolJ Appl Microbiol200089610591065https://doi.org/10.1046/j.1365-2672.2000.01214.x10.1046/j.1365-2672.2000.01214.x11123479Search in Google Scholar
Salmond GPC, Fineran PC. A century of the phage: past, present and future. Nat Rev Microbiol. 2015;13(12):777–886. https://doi.org/10.1038/nrmicro3564SalmondGPCFineranPCA century of the phage: past, present and futureNat Rev Microbiol20151312777886https://doi.org/10.1038/nrmicro356410.1038/nrmicro356426548913Search in Google Scholar
Tang S, Borodovsky M. Ab initio gene identification in metagenomic sequences. Nelson K, editor. Encyclopedia of metagenomics. New York (USA): Springer; 2013. https://doi.org/10.1007/978-1-4614-6418-1_440-1TangSBorodovskyMAb initio gene identification in metagenomic sequences. Nelson K, editor. Encyclopedia of metagenomicsNew York (USA)Springer2013https://doi.org/10.1007/978-1-4614-6418-1_440-110.1007/978-1-4614-6418-1_440-1Search in Google Scholar
Trevors KE, Holley RA, Kempton AG. Isolation and characterization of a Lactobacillus plantarum bacteriophage isolated from a meat starter culture*. J Appl BacterioL. 1983;54(2):281–288. https://doi.org/10.1111/j.1365-2672.1983.tb02618.xTrevorsKEHolleyRAKemptonAGIsolation and characterization of a Lactobacillus plantarum bacteriophage isolated from a meat starter culture*J Appl BacterioL1983542281288https://doi.org/10.1111/j.1365-2672.1983.tb02618.x10.1111/j.1365-2672.1983.tb02618.xSearch in Google Scholar
White K, Yu JH, Eraclio G, Bello FD, Nauta A, Mahony J, van Douwe S. Bacteriophage-host interactions as a platform to establish the role of phages in modulating the microbial composition of fermented foods. Microbiome Res Rep. 2022;1:3. https://doi.org/10.20517/mrr.2021.04WhiteKYuJHEraclioGBelloFDNautaAMahonyJvanDouwe SBacteriophage-host interactions as a platform to establish the role of phages in modulating the microbial composition of fermented foodsMicrobiome Res Rep202213https://doi.org/10.20517/mrr.2021.0410.20517/mrr.2021.04Search in Google Scholar
Yasin T, Mustafa A. A protein which masks galactose receptor mediated phage susceptibility in Lactococcus lactis subsp. lactis MPL56. Int J Food Sci Technol. 2002;37(2):139–144. https://doi.org/10.1046/j.1365-2621.2002.00550.xYasinTMustafaAA protein which masks galactose receptor mediated phage susceptibility in Lactococcus lactis subsplactis MPL56. Int J Food Sci Technol2002372139144https://doi.org/10.1046/j.1365-2621.2002.00550.x10.1046/j.1365-2621.2002.00550.xSearch in Google Scholar
Yoichi M, Abe M, Miyanaga K, Unno H, Tanji Y. Alteration of tail fiber protein gp38 enables T2 phage to infect Escherichia coli O157:H7. J Biotechnol. 2005;115(1):101–107. https://doi.org/10.1016/j.jbiotec.2004.08.003YoichiMAbeMMiyanagaKUnnoHTanjiYAlteration of tail fiber protein gp38 enables T2 phage to infect Escherichia coli O157H7J Biotechnol20051151101107https://doi.org/10.1016/j.jbiotec.2004.08.00310.1016/j.jbiotec.2004.08.00315607229Search in Google Scholar
Zago M, Lanza B, Rossetti L, Muzzalupo I, Carminati D, Giraffa G. Selection of Lactobacillus plantarum strains to use as starters in fermented table olives: Oleuropeinase activity and phage sensitivity. Food Microbiol. 2013;34(1):81–87. https://doi.org/10.1016/j.fm.2012.11.005ZagoMLanzaBRossettiLMuzzalupoICarminatiDGiraffaGSelection of Lactobacillus plantarum strains to use as starters in fermented table olives: Oleuropeinase activity and phage sensitivityFood Microbiol20133418187https://doi.org/10.1016/j.fm.2012.11.00510.1016/j.fm.2012.11.00523498181Search in Google Scholar