Cite

Angeby KA, Klintz L, Hoffner SE. Rapid and inexpensive drug susceptibility testing of Mycobacterium tuberculosis with a nitrate reductase assay. J Clin Microbiol. 2002 Feb;40(2):553–555. https://doi.org/10.1128/jcm.40.2.553-555.2002AngebyKAKlintzLHoffnerSE. Rapid and inexpensive drug susceptibility testing of Mycobacterium tuberculosis with a nitrate reductase assay. J Clin Microbiol. 2002Feb;40(2):553555. https://doi.org/10.1128/jcm.40.2.553-555.200210.1128/JCM.40.2.553-555.2002Search in Google Scholar

Anuchin AM, Mulyukin AL, Suzina NE, Duda VI, El-Registan GI, Kaprelyants AS. Dormant forms of Mycobacterium smegmatis with distinct morphology. Microbiology. 2009 Apr;155(4):1071–1079. https://doi.org/10.1099/mic.0.023028-0AnuchinAMMulyukinALSuzinaNEDudaVIEl-RegistanGIKaprelyantsAS. Dormant forms of Mycobacterium smegmatis with distinct morphology. Microbiology. 2009Apr;155(4):10711079. https://doi.org/10.1099/mic.0.023028-010.1099/mic.0.023028-0Search in Google Scholar

Bentrup KH, Russell DG. Mycobacterial persistence: adaptation to a changing environment. Trends Microbiol. 2001 Dec;9(12):597–605. https://doi.org/10.1016/S0966-842X(01)02238-7BentrupKHRussellDG. Mycobacterial persistence: adaptation to a changing environment. Trends Microbiol. 2001Dec;9(12):597605. https://doi.org/10.1016/S0966-842X(01)02238-710.1016/S0966-842X(01)02238-7Search in Google Scholar

Bertrand T, Eady NA, Jones JN, Jesmin, Nagy JM, Jamart-Grégoire B, Raven EL, Brown KA. Crystal structure of Mycobacterium tuberculosis catalase-peroxidase. J Biol Chem. 2004 Sep 10; 279(37):38991–38999. https://doi.org/10.1074/jbc.M402382200BertrandTEadyNAJonesJNJesminNagyJMJamart-GrégoireBRavenELBrownKA. Crystal structure of Mycobacterium tuberculosis catalase-peroxidase. J Biol Chem. 2004Sep10; 279(37):3899138999. https://doi.org/10.1074/jbc.M40238220010.1074/jbc.M40238220015231843Search in Google Scholar

Bönicke R, Juhasz SE, Diemer U. Studies on the nitrate reductase activity of mycobacteria in the presence of fatty acids and related compounds. Am Rev Respir Dis. 1970 Oct;102(4):507–515. https://doi.org/10.1164/arrd.1970.102.4.507BönickeRJuhaszSEDiemerU. Studies on the nitrate reductase activity of mycobacteria in the presence of fatty acids and related compounds. Am Rev Respir Dis. 1970Oct;102(4):507515. https://doi.org/10.1164/arrd.1970.102.4.507Search in Google Scholar

Cunningham AF, Spreadbury CL. Mycobacterial stationary phase induced by low oxygen tension: cell wall thickening and localization of the 16-kilodalton α-crystallin homolog. J Bacteriol. 1998 Feb;180(4):801–808. https://doi.org/10.1128/JB.180.4.801-808.1998CunninghamAFSpreadburyCL. Mycobacterial stationary phase induced by low oxygen tension: cell wall thickening and localization of the 16-kilodalton α-crystallin homolog. J Bacteriol. 1998Feb;180(4):801808. https://doi.org/10.1128/JB.180.4.801-808.199810.1128/JB.180.4.801-808.19981069579473032Search in Google Scholar

Dick T, Lee BH, Murugasu-Oei B. Oxygen depletion induced dormancy in Mycobacterium smegmatis. FEMS Microbiol Lett. 1998 Jun 15;163(2):159–164. https://doi.org/10.1111/j.1574-6968.1998.tb13040.xDickTLeeBHMurugasu-OeiB. Oxygen depletion induced dormancy in Mycobacterium smegmatis. FEMS Microbiol Lett. 1998Jun15;163(2):159164. https://doi.org/10.1111/j.1574-6968.1998.tb13040.x10.1111/j.1574-6968.1998.tb13040.x9673018Search in Google Scholar

Djachenko GM, Kravchenko NO, Golovach OV, Dmytruk OM, Il’i’nyh VV. [Variability of phenotypical markings of mycobacteries of different kinds with acquired medicamentose stability] (in Ukrainian). Scientific Messenger of Lviv National University of Veterinary Medicine and Biotechnologies named after S.Z. Gzhytskyj. 2008;10(3):72–77.DjachenkoGMKravchenkoNOGolovachOVDmytrukOMIl’i’nyhVV. [Variability of phenotypical markings of mycobacteries of different kinds with acquired medicamentose stability] (in Ukrainian). Scientific Messenger of Lviv National University of Veterinary Medicine and Biotechnologies named after S.Z. Gzhytskyj. 2008;10(3):7277.Search in Google Scholar

Djachenko GM, Kravchenko NO, Il’i’nyh VV, Dmytruk OM, Golovach OV. [Adaptation and variability of the properties of mycobacteria of different species for the influence of antibacterial drugs] (in Ukrainan). Sil’s’kogospodars’ka mikrobiologija: Mizhvid. temat. nauk. zb. 2009;9:158–165.DjachenkoGMKravchenkoNOIl’i’nyhVVDmytrukOMGolovachOV. [Adaptation and variability of the properties of mycobacteria of different species for the influence of antibacterial drugs] (in Ukrainan). Sil’s’kogospodars’ka mikrobiologija: Mizhvid. temat. nauk. zb. 2009;9:158165.Search in Google Scholar

Fonseca Lde S, Vieira GB, Sobral LF, Ribeiro EO, Marsico AG. Comparative evaluation under routine conditions of the nitrate reduction assay, the proportion assay and the MGIT 960 assay for drug susceptibility testing of clinical isolates of Mycobacterium tuberculosis. Mem Inst Oswaldo Cruz. 2012 Feb;107(1):142–144. https://doi.org/10.1590/s0074-02762012000100021Fonseca LdeSVieiraGBSobralLFRibeiroEOMarsicoAG. Comparative evaluation under routine conditions of the nitrate reduction assay, the proportion assay and the MGIT 960 assay for drug susceptibility testing of clinical isolates of Mycobacterium tuberculosis. Mem Inst Oswaldo Cruz. 2012Feb;107(1):142144. https://doi.org/10.1590/s0074-0276201200010002110.1590/S0074-0276201200010002122310549Search in Google Scholar

Ford CB, Lin PL, Chase MR, Shah RR, Iartchouk O, Galagan J, Mohaideen N, Ioerger TR, Sacchettini JC, Lipsitch M, et al. Use of whole genome sequencing to estimate the mutation rate of Mycobacterium tuberculosis during latent infection. Nat Genet. 2011 May; 43(5):482–486. https://doi.org/10.1038/ng.811FordCBLinPLChaseMRShahRRIartchoukOGalaganJMohaideenNIoergerTRSacchettiniJCLipsitchM. Use of whole genome sequencing to estimate the mutation rate of Mycobacterium tuberculosis during latent infection. Nat Genet. 2011May; 43(5):482486. https://doi.org/10.1038/ng.81110.1038/ng.811310187121516081Search in Google Scholar

Fritz C, Maass S, Kreft A, Bange FC. Dependence of Mycobacterium bovis BCG on anaerobic nitrate reductase for persistence is tissue specific. Infect Immun. 2002 Jan;70(1):286–291. https://doi.org/10.1128/iai.70.1.286-291.2002FritzCMaassSKreftABangeFC. Dependence of Mycobacterium bovis BCG on anaerobic nitrate reductase for persistence is tissue specific. Infect Immun. 2002Jan;70(1):286291. https://doi.org/10.1128/iai.70.1.286-291.200210.1128/IAI.70.1.286-291.200212761211748194Search in Google Scholar

Gillespie J, Barton LL, Rypka EW. Phenotypic changes in mycobacteria grown in oxygen-limited conditions. J Med Microbiol. 1986 May;21(3):251–255. https://doi.org/10.1099/00222615-21-3-251GillespieJBartonLLRypkaEW. Phenotypic changes in mycobacteria grown in oxygen-limited conditions. J Med Microbiol. 1986May;21(3):251255. https://doi.org/10.1099/00222615-21-3-25110.1099/00222615-21-3-2513084791Search in Google Scholar

Glebenjuk VV, Telizhenko KV. [Species affiliation of mycobacterium isolated from animals in the Dnipropetrovsk region] (in Ukrainian). Scientific and Technical Bulletin of the National State Center of Biosafety and Environmental Control of Resources of Agroindustrial Complex. 2015;3(1):61–64. Available from http://biosafety-center.com/wp-content/uploads/2015/06/2.pdfGlebenjukVVTelizhenkoKV. [Species affiliation of mycobacterium isolated from animals in the Dnipropetrovsk region] (in Ukrainian). Scientific and Technical Bulletin of the National State Center of Biosafety and Environmental Control of Resources of Agroindustrial Complex. 2015;3(1):6164. Available from http://biosafety-center.com/wp-content/uploads/2015/06/2.pdfSearch in Google Scholar

Gomez JE, McKinney JD. M. tuberculosis persistence, latency, and drug tolerance. Tuberculosis. 2004;84(1–2):29–44. https://doi.org/10.1016/j.tube.2003.08.003GomezJEMcKinneyJD. M. tuberculosis persistence, latency, and drug tolerance. Tuberculosis. 2004;84(1–2):2944. https://doi.org/10.1016/j.tube.2003.08.00310.1016/j.tube.2003.08.003Search in Google Scholar

Hu YM, Butcher PD, Sole K, Mitchison DA, Coates ARM. Protein synthesis is shutdown in dormant Mycobacterium tuberculosis and is reversed by oxygen or heat shock. FEMS Microbiol Lett. 1998 Jan 1;158(1):139–145. https://doi.org/10.1111/j.1574-6968.1998.tb12813.xHuYMButcherPDSoleKMitchisonDACoatesARM. Protein synthesis is shutdown in dormant Mycobacterium tuberculosis and is reversed by oxygen or heat shock. FEMS Microbiol Lett. 1998Jan1;158(1):139145. https://doi.org/10.1111/j.1574-6968.1998.tb12813.x10.1111/j.1574-6968.1998.tb12813.xSearch in Google Scholar

Kondratjuk N, Sybirna R. [Usage and modification of biochemical tests confirming the belonging of isolated cultures to tuberculosis mycobacteria] (in Ukrainian). Visnyk L’viv Univ. 2008;47:70–73. Available from http://old.franko.lviv.ua/faculty/biologh/wis/47/2/8/8.pdfKondratjukNSybirnaR. [Usage and modification of biochemical tests confirming the belonging of isolated cultures to tuberculosis mycobacteria] (in Ukrainian). Visnyk L’viv Univ. 2008;47:7073. Available from http://old.franko.lviv.ua/faculty/biologh/wis/47/2/8/8.pdfSearch in Google Scholar

Kovaleva LO. [Special adaptive capabilities of fast-growing strains of M. bovis on artificial hard places for numerous passages] (in Ukrainian). Bulletin of the Poltava Service of the Agrarian Academy. 2005;1:166–168.KovalevaLO. [Special adaptive capabilities of fast-growing strains of M. bovis on artificial hard places for numerous passages] (in Ukrainian). Bulletin of the Poltava Service of the Agrarian Academy. 2005;1:166168.Search in Google Scholar

Kumar R, Sanyal S. Mycobacterium tuberculosis: dormancy, persistence and survival in the light of protein synthesis. In: Cardona PJ, editor. Understanding tuberculosis – deciphering the secret life of the bacilli. Rijeka (Croatia): IntechOpen; 2012. p. 217–238. https://doi.org/10.5772/31098KumarRSanyalS. Mycobacterium tuberculosis: dormancy, persistence and survival in the light of protein synthesis. In: CardonaPJ, editor. Understanding tuberculosis – deciphering the secret life of the bacilli. Rijeka (Croatia): IntechOpen; 2012. p. 217238. https://doi.org/10.5772/3109810.5772/31098Search in Google Scholar

Lemus D, Montoro E, Echemendía M, Martin A, Portaels F, Palomino JC. Nitrate reductase assay for detection of drug resistance in Mycobacterium tuberculosis: simple and inexpensive method for low-resource laboratories. J Med Microbiol. 2006 Jul;55(7):861–863. https://doi.org/10.1099/jmm.0.46540-0LemusDMontoroEEchemendíaMMartinAPortaelsFPalominoJC. Nitrate reductase assay for detection of drug resistance in Mycobacterium tuberculosis: simple and inexpensive method for low-resource laboratories. J Med Microbiol. 2006Jul;55(7):861863. https://doi.org/10.1099/jmm.0.46540-010.1099/jmm.0.46540-0Search in Google Scholar

Lewis AH, Falkinham JO 3rd. Microaerobic growth and anaerobic survival of Mycobacterium avium, Mycobacterium intracellulare and Mycobacterium scrofulaceum. Int J Mycobacteriol. 2015 Mar; 4(1):25–30. https://doi.org/10.1016/j.ijmyco.2014.11.066LewisAHFalkinhamJO3rd. Microaerobic growth and anaerobic survival of Mycobacterium avium, Mycobacterium intracellulare and Mycobacterium scrofulaceum. Int J Mycobacteriol. 2015Mar; 4(1):2530. https://doi.org/10.1016/j.ijmyco.2014.11.06610.1016/j.ijmyco.2014.11.066Search in Google Scholar

Lewis K. Persister cells, dormancy and infectious disease. Nat Rev Microbiol. 2007 Jan;5(1):48–56. https://doi.org/10.1038/nrmicro1557LewisK. Persister cells, dormancy and infectious disease. Nat Rev Microbiol. 2007Jan;5(1):4856. https://doi.org/10.1038/nrmicro1557Search in Google Scholar

Li Z, Kelley C, Collins F, Rouse D, Morris S. Expression of katG in Mycobacterium tuberculosis is associated with its growth and persistence in mice and guinea pigs. J Infect Dis. 1998 Apr;177(4):1030–1035. https://doi.org/10.1086/515254LiZKelleyCCollinsFRouseDMorrisS. Expression of katG in Mycobacterium tuberculosis is associated with its growth and persistence in mice and guinea pigs. J Infect Dis. 1998Apr;177(4):10301035. https://doi.org/10.1086/51525410.1086/515254Search in Google Scholar

Lysenko AP, Vlasenko ІG, Vlasenko VV, Babijchuk JV. [Biochemical properties of bacillary and modified forms of mycobacteria grown on nutrient media] (in Russian). Scientific Messenger of Lviv National University of Veterinary Medicine and Biotechnologies named after S.Z. Gzhytskyj. 2011;13(4):249–252.LysenkoAPVlasenkoІGVlasenkoVVBabijchukJV. [Biochemical properties of bacillary and modified forms of mycobacteria grown on nutrient media] (in Russian). Scientific Messenger of Lviv National University of Veterinary Medicine and Biotechnologies named after S.Z. Gzhytskyj. 2011;13(4):249252.Search in Google Scholar

Lysenko OP, Vlasenko VV, Palii HK, Vlasenko IH, Nazarchuk OA. [Mycobacterium of tuberculosis with defective cell wall, determined in the brain of the biological model with spongional changes] (in Ukrainian). Reports of Vinnytsia National Medical University. 2019;23(1):12–19. https://doi.org/10.31393/reports-vnmedical-2019-23(1)-02LysenkoOPVlasenkoVVPaliiHKVlasenkoIHNazarchukOA. [Mycobacterium of tuberculosis with defective cell wall, determined in the brain of the biological model with spongional changes] (in Ukrainian). Reports of Vinnytsia National Medical University. 2019;23(1):1219. https://doi.org/10.31393/reports-vnmedical-2019-23(1)-0210.31393/reports-vnmedical-2019-23(1)-02Search in Google Scholar

Manca C, Paul S, Barry CE, Freedman VH, Kaplan G. Mycobacterium tuberculosis catalase and peroxidase activities and resistance to oxidative killing in human monocytes in vitro. Infect Immun. 1999 Jan;67(1):74–79. https://doi.org/10.1128/IAI.67.1.74-79.1999MancaCPaulSBarryCEFreedmanVHKaplanG. Mycobacterium tuberculosis catalase and peroxidase activities and resistance to oxidative killing in human monocytes in vitro. Infect Immun. 1999Jan;67(1):7479. https://doi.org/10.1128/IAI.67.1.74-79.199910.1128/IAI.67.1.74-79.1999962799864198Search in Google Scholar

Manchenko VM, Trocenko ZR, Pavlenko MS. [Guidelines for diagnosing tuberculosis] (in Ukrainian). Kyiv. 1994:39.ManchenkoVMTrocenkoZRPavlenkoMS. [Guidelines for diagnosing tuberculosis] (in Ukrainian). Kyiv. 1994:39.Search in Google Scholar

Martin A, Palomino JC, Portaels F. Rapid detection of ofloxacin resistance in Mycobacterium tuberculosis by two low-cost colorimetric methods: resazurin and nitrate reductase assays. J Clin Microbiol. 2005 Apr;43(4):1612–1616. https://doi.org/10.1128/JCM.43.4.1612-1616.2005MartinAPalominoJCPortaelsF. Rapid detection of ofloxacin resistance in Mycobacterium tuberculosis by two low-cost colorimetric methods: resazurin and nitrate reductase assays. J Clin Microbiol. 2005Apr;43(4):16121616. https://doi.org/10.1128/JCM.43.4.1612-1616.200510.1128/JCM.43.4.1612-1616.2005108135415814974Search in Google Scholar

Montoro E, Lemus D, Echemendia M, Martin A, Portaels F, Palomino JC. Comparative evaluation of the nitrate reduction assay, the MTT test, and the resazurin microtitre assay for drug susceptibility testing of clinical isolates of Mycobacterium tuberculosis. J Antimicrob Chemother. 2005 Apr;55(4):500–505. https://doi.org/10.1093/jac/dki023MontoroELemusDEchemendiaMMartinAPortaelsFPalominoJC. Comparative evaluation of the nitrate reduction assay, the MTT test, and the resazurin microtitre assay for drug susceptibility testing of clinical isolates of Mycobacterium tuberculosis. J Antimicrob Chemother. 2005Apr;55(4):500505. https://doi.org/10.1093/jac/dki02310.1093/jac/dki023Search in Google Scholar

Nyka W. Studies on the effect of starvation on mycobacteria. Infect Immun. 1974 May;9(5):843–50. https://doi.org/10.1128/iai.9.5.843-850.1974NykaW. Studies on the effect of starvation on mycobacteria. Infect Immun. 1974May;9(5):84350. https://doi.org/10.1128/iai.9.5.843-850.197410.1128/iai.9.5.843-850.1974Search in Google Scholar

Philippot L, Højberg O. Dissimilatory nitrate reductases in bacteria. Biochim Biophys Acta. 1999 Jul 7;1446(1–2):1–23. https://doi.org/10.1016/s0167-4781(99)00072-xPhilippotLHøjbergO. Dissimilatory nitrate reductases in bacteria. Biochim Biophys Acta. 1999Jul7;1446(1–2):123. https://doi.org/10.1016/s0167-4781(99)00072-x10.1016/S0167-4781(99)00072-XSearch in Google Scholar

Portillo-Gómez L, Morris SL, Panduro A. Rapid and efficient detection of extra-pulmonary Mycobacterium tuberculosis by PCR analysis. Int J Tuberc Lung Dis. 2000 Apr;4(4):361–370.Portillo-GómezLMorrisSLPanduroA. Rapid and efficient detection of extra-pulmonary Mycobacterium tuberculosis by PCR analysis. Int J Tuberc Lung Dis. 2000Apr;4(4):361370.Search in Google Scholar

Primm TP, Andersen SJ, Mizrahi V, Avarbock D, Rubin H, Barry CE. The stringent response of Mycobacterium tuberculosis is required for long-term survival. Bacteriol. 2000 Sep;182(17): 4889–4898. https://doi.org/10.1128/JB.182.17.4889-4898.2000PrimmTPAndersenSJMizrahiVAvarbockDRubinHBarryCE. The stringent response of Mycobacterium tuberculosis is required for long-term survival. Bacteriol. 2000Sep;182(17): 48894898. https://doi.org/10.1128/JB.182.17.4889-4898.200010.1128/JB.182.17.4889-4898.200011136910940033Search in Google Scholar

Ritz N, Hanekom WA, Robins-Browne R, Britton WJ, Curtis N. Influence of BCG vaccine strain on the immune response and protection against tuberculosis. FEMS Microbiol Rev. 2008 Aug;32(5):821–841. https://doi.org/10.1111/j.1574-6976.2008.00118.xRitzNHanekomWARobins-BrowneRBrittonWJCurtisN. Influence of BCG vaccine strain on the immune response and protection against tuberculosis. FEMS Microbiol Rev. 2008Aug;32(5):821841. https://doi.org/10.1111/j.1574-6976.2008.00118.x10.1111/j.1574-6976.2008.00118.x18616602Search in Google Scholar

Rodriguez JG, Mejia GA, Del Portillo P, Patarroyo ME, Murillo LA. Species-specific identification of Mycobacterium bovis by PCR. Microbiology. 1995 Sep;141(9):2131–2138. https://doi.org/10.1099/13500872-141-9-2131RodriguezJGMejiaGADel PortilloPPatarroyoMEMurilloLA. Species-specific identification of Mycobacterium bovis by PCR. Microbiology. 1995Sep;141(9):21312138. https://doi.org/10.1099/13500872-141-9-213110.1099/13500872-141-9-21317496524Search in Google Scholar

Shleeva MO, Bagramyan K, Telkov MV, Mukamolova GV, Young M, Kell DB, Kaprelyants AS. Formation and resuscitation of “non-culturable” cells of Rhodococcus rhodochrous and Mycobacterium tuberculosis in prolonged stationary phase. Microbiology. 2002 May;148(5):1581–1591. https://doi.org/10.1099/00221287-148-5-1581ShleevaMOBagramyanKTelkovMVMukamolovaGVYoungMKellDBKaprelyantsAS. Formation and resuscitation of “non-culturable” cells of Rhodococcus rhodochrous and Mycobacterium tuberculosis in prolonged stationary phase. Microbiology. 2002May;148(5):15811591. https://doi.org/10.1099/00221287-148-5-158110.1099/00221287-148-5-158111988533Search in Google Scholar

Shleeva MO, Kudykina YK, Vostroknutova GN, Suzina NE, Mulyukin AL, Kaprelyants AS. Dormant ovoid cells of Mycobacterium tuberculosis are formed in response to gradual external acidification. Tuberculosis. 2011 Mar;91(2):146–154. https://doi.org/10.1016/j.tube.2010.12.006ShleevaMOKudykinaYKVostroknutovaGNSuzinaNEMulyukinALKaprelyantsAS. Dormant ovoid cells of Mycobacterium tuberculosis are formed in response to gradual external acidification. Tuberculosis. 2011Mar;91(2):146154. https://doi.org/10.1016/j.tube.2010.12.00610.1016/j.tube.2010.12.00621262587Search in Google Scholar

Smeulders MJ, Keer J, Speight RA, Williams HD. Adaptation of Mycobacterium smegmatis to stationary phase. J Bacteriol. 1999 Jan;181(1):270–283. https://doi.org/10.1128/JB.181.1.270-283.1999SmeuldersMJKeerJSpeightRAWilliamsHD. Adaptation of Mycobacterium smegmatis to stationary phase. J Bacteriol. 1999Jan;181(1):270283. https://doi.org/10.1128/JB.181.1.270-283.199910.1128/JB.181.1.270-283.19991035599864340Search in Google Scholar

Tkachenko O, Bilan M, Hlebeniuk V, Alekseeva N, Nedosekov V, Galatiuk O. Chronology of morphological forms of Mycobacterium bovis rapid-growing strain. Acta Vet Eurasia. 2020a;46(3):104–114. https://doi.org/10.5152/actavet.2020.20007TkachenkoOBilanMHlebeniukVAlekseevaNNedosekovVGalatiukO. Chronology of morphological forms of Mycobacterium bovis rapid-growing strain. Acta Vet Eurasia. 2020a;46(3):104114. https://doi.org/10.5152/actavet.2020.2000710.5152/actavet.2020.20007Search in Google Scholar

Tkachenko O, Bilan M, Hlebeniuk V, Kozak N, Nedosekov V, Galatiuk O. Dissociation of Mycobacterium bovis: morphology, biological properties and lipids. Adv Anim Vet Sci. 2020b;8(3):312–326. https://doi.org/10.17582/journal.aavs/2020/8.3.317.326TkachenkoOBilanMHlebeniukVKozakNNedosekovVGalatiukO. Dissociation of Mycobacterium bovis: morphology, biological properties and lipids. Adv Anim Vet Sci. 2020b;8(3):312326. https://doi.org/10.17582/journal.aavs/2020/8.3.317.32610.17582/journal.aavs/2020/8.3.317.326Search in Google Scholar

Tkachenko OA. [Rapid-growing M. bovis in the problem of tuberculosis] (in Ukrainian). Veterinary Medicine of Ukraine. 2004; 7: 14–17. Available from http://dspace.dsau.dp.ua/jspui/handle/123456789/745TkachenkoOA. [Rapid-growing M. bovis in the problem of tuberculosis] (in Ukrainian). Veterinary Medicine of Ukraine. 2004; 7: 1417. Available from http://dspace.dsau.dp.ua/jspui/handle/123456789/745Search in Google Scholar

Torkko P, Suutari M, Suomalainen S, Paulin L, Larsson L, Katila ML. Separation among Species of Mycobacterium terrae Complex by Lipid Analyses: Comparison with Biochemical Tests and 16S rRNA Sequencing. J Clin Microbiol. 1998 Feb;36(2):499–505. https://doi.org/10.1128/JCM.36.2.499-505.1998TorkkoPSuutariMSuomalainenSPaulinLLarssonLKatilaML. Separation among Species of Mycobacterium terrae Complex by Lipid Analyses: Comparison with Biochemical Tests and 16S rRNA Sequencing. J Clin Microbiol. 1998Feb;36(2):499505. https://doi.org/10.1128/JCM.36.2.499-505.199810.1128/JCM.36.2.499-505.19981045679466766Search in Google Scholar

Usha V, Jayaraman R, Toro JC, Hoffner SE, Das KS. Glycine and alanine dehydrogenase activities are catalyzed by the same protein in Mycobacterium smegmatis: upregulation of both activities under microaerophilic adaptation. Can J Microbiol. 2002 Jan;48(1):7–13. https://doi.org/10.1139/w01-126UshaVJayaramanRToroJCHoffnerSEDasKS. Glycine and alanine dehydrogenase activities are catalyzed by the same protein in Mycobacterium smegmatis: upregulation of both activities under microaerophilic adaptation. Can J Microbiol. 2002Jan;48(1):713. https://doi.org/10.1139/w01-12610.1139/w01-12611888165Search in Google Scholar

Velayati AA, Farnia P, Ibrahim TA, Haroun RZ, Kuan HO, Ghanavi J, Farnia P, Kabarei AN, Tabarsi P, Omar AR, et al. Differences in cell wall thickness between resistant and nonresistant strains of Mycobacterium tuberculosis: using transmission electron microscopy. Chemotherapy. 2009;55(5):303–307. https://doi.org/10.1159/000226425VelayatiAAFarniaPIbrahimTAHarounRZKuanHOGhanaviJFarniaPKabareiANTabarsiPOmarAR. Differences in cell wall thickness between resistant and nonresistant strains of Mycobacterium tuberculosis: using transmission electron microscopy. Chemotherapy. 2009;55(5):303307. https://doi.org/10.1159/00022642510.1159/00022642519556787Search in Google Scholar

Velayati AA, Farnia P. Division-cycle in Mycobacterium tuberculosis. Int J Mycobacteriol. 2012 Sep;1(3):111–117. https://doi.org/10.1016/j.ijmyco.2012.08.003VelayatiAAFarniaP. Division-cycle in Mycobacterium tuberculosis. Int J Mycobacteriol. 2012Sep;1(3):111117. https://doi.org/10.1016/j.ijmyco.2012.08.00310.1016/j.ijmyco.2012.08.00326787205Search in Google Scholar

Vera HD, Rettger LF. Morphological variations of the tubercle bacillus and certain recently isolated soil acid fasts with emphasis on filterability. J Bacteriol. 1940 Jun;39(6):659–687. https://doi.org/10.1128/JB.39.6.659-687.1940VeraHDRettgerLF. Morphological variations of the tubercle bacillus and certain recently isolated soil acid fasts with emphasis on filterability. J Bacteriol. 1940Jun;39(6):659687. https://doi.org/10.1128/JB.39.6.659-687.194010.1128/jb.39.6.659-687.194037460616560323Search in Google Scholar

Wayne LG, Lin KY. Glyoxylate metabolism and adaptation of Mycobacterium tuberculosis to survival under anaerobic conditions. Infect Immun. 1982 Sep;37(3):1042–1049. https://doi.org/10.1128/iai.37.3.1042-1049.1982WayneLGLinKY. Glyoxylate metabolism and adaptation of Mycobacterium tuberculosis to survival under anaerobic conditions. Infect Immun. 1982Sep;37(3):10421049. https://doi.org/10.1128/iai.37.3.1042-1049.198210.1128/iai.37.3.1042-1049.19823476456813266Search in Google Scholar

Wayne LG, Sramek HA. Agents of newly recognized or infrequently encountered mycobacterial diseases. Clin Microbiol Rev. 1992 Jan; 5(1):1–25. https://doi.org/10.1128/CMR.5.1.1WayneLGSramekHA. Agents of newly recognized or infrequently encountered mycobacterial diseases. Clin Microbiol Rev. 1992Jan; 5(1):125. https://doi.org/10.1128/CMR.5.1.110.1128/CMR.5.1.13582201735092Search in Google Scholar

Yavorska GV, Sybirna RI. [Morphologic-cultural and physiologic-biochemical properties of atypical mycobacteria] (in Ukrainian). Mikrobiolohichnyi zhurnal. 2009;71(4):27–34. Available from http://dspace.nbuv.gov.ua/bitstream/handle/123456789/7790/05-Yavorivska.pdfYavorskaGVSybirnaRI. [Morphologic-cultural and physiologic-biochemical properties of atypical mycobacteria] (in Ukrainian). Mikrobiolohichnyi zhurnal. 2009;71(4):2734. Available from http://dspace.nbuv.gov.ua/bitstream/handle/123456789/7790/05-Yavorivska.pdfSearch in Google Scholar

Young M, Mukamolova GV, Kaprelyants AS. Mycobacterial dormancy and its relation to persistence. In: Parish T, editor. Mycobacterial molecular biology. Norfolk (UK): Horizon Bioscience; 2005. p. 265–320.YoungMMukamolovaGVKaprelyantsAS. Mycobacterial dormancy and its relation to persistence. In: ParishT, editor. Mycobacterial molecular biology. Norfolk (UK): Horizon Bioscience; 2005. p. 265320.Search in Google Scholar

Zhang L, Ru HW, Chen FZ, Jin CY, Sun RF, Fan XY, Guo M, Mai JT, Xu WX, Lin QX, et al. Variable virulence and efficacy of BCG vaccine strains in mice and correlation with genome polymorphisms. Mol Ther. 2016 Feb;24(2):398–405. https://doi.org/10.1038/mt.2015.216ZhangLRuHWChenFZJinCYSunRFFanXYGuoMMaiJTXuWXLinQX. Variable virulence and efficacy of BCG vaccine strains in mice and correlation with genome polymorphisms. Mol Ther. 2016Feb;24(2):398405. https://doi.org/10.1038/mt.2015.21610.1038/mt.2015.216481782226643797Search in Google Scholar

Zhurylo OA, Barbova AI, Glushkevych TG, Tretjakova LV. [Standards of bacteriological diagnosis of tuberculosis in laboratories of tuberculosis establishments of Ukraine] (in Ukrainian). Ministerstvo ohorony zdorov’ja Ukrai’ny i Nacional’na akademija medychnyh nauk Ukrai’ny Derzhavna ustanova “Nacional’nyj instytut ftyziatrii’ i pul’monologii’ im. F.G. Janovs’kogo NAMN Ukrai’ny”. Navchal’nyj posibnyk dlja fahivciv bakteriologichnyh laboratorij zakladiv protytuberkul’oznoi’ sluzhby Ukrai’ny. 2012;188. Available from http://www.ifp.kiev.ua/ftp1/metoddoc/posibnyk_1_2012.pdfZhuryloOABarbovaAIGlushkevychTGTretjakovaLV. [Standards of bacteriological diagnosis of tuberculosis in laboratories of tuberculosis establishments of Ukraine] (in Ukrainian). Ministerstvo ohorony zdorov’ja Ukrai’ny i Nacional’na akademija medychnyh nauk Ukrai’ny Derzhavna ustanova “Nacional’nyj instytut ftyziatrii’ i pul’monologii’ im. F.G. Janovs’kogo NAMN Ukrai’ny”. Navchal’nyj posibnyk dlja fahivciv bakteriologichnyh laboratorij zakladiv protytuberkul’oznoi’ sluzhby Ukrai’ny. 2012;188. Available from http://www.ifp.kiev.ua/ftp1/metoddoc/posibnyk_1_2012.pdfSearch in Google Scholar

eISSN:
2544-4646
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Life Sciences, Microbiology and Virology