Acceso abierto

Improved Biosurfactant Production by Enterobacter cloacae B14, Stability Studies, and its Antimicrobial Activity


Cite

Aparna A, Srinikethan G, Smitha H. Production and characterization of biosurfactant produced by a novel Pseudomonas sp. 2B. Colloids Surf B Biointerfaces. 2012 Jun;95:23–29. https://doi.org/10.1016/j.colsurfb.2012.01.043AparnaASrinikethanGSmithaH. Production and characterization of biosurfactant produced by a novel Pseudomonas sp. 2B. Colloids Surf B Biointerfaces.2012Jun;95:2329. https://doi.org/10.1016/j.colsurfb.2012.01.04310.1016/j.colsurfb.2012.01.04322445235Search in Google Scholar

Batool R, Ayub S, Akbar I. Isolation of biosurfactant producing bacteria from petroleum contaminated sites and their characterization. Soil Environ. 2017 May 28;36(01):35–44. https://doi.org/10.25252/SE/17/20992BatoolRAyubSAkbarI. Isolation of biosurfactant producing bacteria from petroleum contaminated sites and their characterization. Soil Environ.2017May28;36(01):3544. https://doi.org/10.25252/SE/17/2099210.25252/SE/17/20992Search in Google Scholar

Bhadoriya SS, Madoriya N, Shakla K, Parihar MS. Biosurfactants: a new pharmaceutical additive for solubility enhancement and pharmaceutical development. Biochem Pharmacol (Los Angel). 2013;02(02):113. https://doi.org/10.4172/2167-0501.1000113BhadoriyaSSMadoriyaNShaklaKPariharMS. Biosurfactants: a new pharmaceutical additive for solubility enhancement and pharmaceutical development. Biochem Pharmacol (Los Angel).2013;02(02):113. https://doi.org/10.4172/2167-0501.100011310.4172/2167-0501.1000113Search in Google Scholar

Cooper DG, Goldenberg BG. Surface-active agents from two bacillus species. Appl Environ Microbiol. 1987;53(2):224–229. https://doi.org/10.1128/AEM.53.2.224-229.1987CooperDGGoldenbergBG. Surface-active agents from two bacillus species. Appl Environ Microbiol.1987;53(2):224229. https://doi.org/10.1128/AEM.53.2.224-229.198710.1128/aem.53.2.224-229.198720364116347271Search in Google Scholar

de Freitas Ferreira J, Vieira EA, Nitschke M. The antibacterial activity of rhamnolipid biosurfactant is pH dependent. Food Res Int. 2019 Feb;116:737–744. https://doi.org/10.1016/j.foodres.2018.09.005de Freitas FerreiraJVieiraEANitschkeM. The antibacterial activity of rhamnolipid biosurfactant is pH dependent. Food Res Int.2019Feb;116:737744. https://doi.org/10.1016/j.foodres.2018.09.00510.1016/j.foodres.2018.09.00530717003Search in Google Scholar

Derguine-Mecheri L, Kebbouche-Gana S, Khemili-Talbi S, Djenane D. Screening and biosurfactant/bioemulsifier production from a high-salt-tolerant halophilic Cryptococcus strain YLF isolated from crude oil. J Petrol Sci Eng. 2018 Mar;162:712–724. https://doi.org/10.1016/j.petrol.2017.10.088Derguine-MecheriLKebbouche-GanaSKhemili-TalbiSDjenaneD. Screening and biosurfactant/bioemulsifier production from a high-salt-tolerant halophilic Cryptococcus strain YLF isolated from crude oil. J Petrol Sci Eng.2018Mar;162:712724. https://doi.org/10.1016/j.petrol.2017.10.08810.1016/j.petrol.2017.10.088Search in Google Scholar

Ekprasert J, Laopila K, Kanakai S. Biosurfactant production by a newly isolated Enterobacter cloacae B14 capable of utilizing spent engine oil. Pol J Environ Stud. 2019 Apr 9;28(4):2603–2610. https://doi.org/10.15244/pjoes/92120EkprasertJLaopilaKKanakaiS. Biosurfactant production by a newly isolated Enterobacter cloacae B14 capable of utilizing spent engine oil. Pol J Environ Stud.2019Apr9;28(4):26032610. https://doi.org/10.15244/pjoes/9212010.15244/pjoes/92120Search in Google Scholar

Fontes GC, Fonseca Amaral PF, Nele M, Zarur Coelho MA. Factorial design to optimize biosurfactant production by Yarrowia lipolytica. J Biomed Biotechnol. 2010;2010:1–8. https://doi.org/10.1155/2010/821306FontesGCFonseca AmaralPFNeleMZarur CoelhoMA. Factorial design to optimize biosurfactant production by Yarrowia lipolytica. J Biomed Biotechnol.2010;2010:18. https://doi.org/10.1155/2010/82130610.1155/2010/821306284635420368788Search in Google Scholar

Fracchia L, Banat JJ, Cavallo M, Ceresa C, Banat IM. Potential therapeutic applications of microbial surface-active compounds. AIMS Bioeng. 2015;2(3):144–162. https://doi.org/10.3934/bioeng.2015.3.144FracchiaLBanatJJCavalloMCeresaCBanatIM. Potential therapeutic applications of microbial surface-active compounds. AIMS Bioeng.2015;2(3):144162. https://doi.org/10.3934/bioeng.2015.3.14410.3934/bioeng.2015.3.144Search in Google Scholar

Fusconi R, Maria Nascimento Assunção R, de Moura Guimarães R, Rodrigues Filho G, Eduardo da Hora Machado A. Exopolysaccharide produced by Gordonia polyisoprenivorans CCT 7137 in GYM commercial medium and sugarcane molasses alternative medium: FT-IR study and emulsifying activity. Carbohydr Polym. 2010 Jan;79(2):403–408. https://doi.org/10.1016/j.carbpol.2009.08.023FusconiRMaria Nascimento AssunçãoRde Moura GuimarãesRRodrigues FilhoGEduardo da Hora MachadoA. Exopolysaccharide produced by Gordonia polyisoprenivorans CCT 7137 in GYM commercial medium and sugarcane molasses alternative medium: FT-IR study and emulsifying activity. Carbohydr Polym.2010Jan;79(2):403408. https://doi.org/10.1016/j.carbpol.2009.08.02310.1016/j.carbpol.2009.08.023Search in Google Scholar

Gharaei-Fathabad E. Biosurfactants in pharmaceutical industry (a mini-review). Am J Drug Discov Dev. 2011 Jan 1;1(1):58–69. https://doi.org/10.3923/ajdd.2011.58.69Gharaei-FathabadE. Biosurfactants in pharmaceutical industry (a mini-review). Am J Drug Discov Dev.2011Jan1;1(1):5869. https://doi.org/10.3923/ajdd.2011.58.6910.3923/ajdd.2011.58.69Search in Google Scholar

Gudiña EJ, Rangarajan V, Sen R, Rodrigues LR. Potential therapeutic applications of biosurfactants. Trends Pharmacol Sci. 2013 Dec;34(12):667–675. https://doi.org/10.1016/j.tips.2013.10.002GudiñaEJRangarajanVSenRRodriguesLR. Potential therapeutic applications of biosurfactants. Trends Pharmacol Sci.2013Dec;34(12):667675. https://doi.org/10.1016/j.tips.2013.10.00210.1016/j.tips.2013.10.00224182625Search in Google Scholar

Jadhav M, Kagalkar A, Jadhav S, Govindwar S. Isolation, characterization, and antifungal application of a biosurfactant produced by Enterobacter sp. MS16. Eur J Lipid Sci Technol. 2011 Nov; 113(11):1347–1356. https://doi.org/10.1002/ejlt.201100023JadhavMKagalkarAJadhavSGovindwarS. Isolation, characterization, and antifungal application of a biosurfactant produced by Enterobacter sp. MS16. Eur J Lipid Sci Technol.2011Nov; 113(11):13471356. https://doi.org/10.1002/ejlt.20110002310.1002/ejlt.201100023Search in Google Scholar

Jahan R, Bodratti AM, Tsianou M, Alexandridis P. Biosurfactants, natural alternatives to synthetic surfactants: physicochemical properties and applications. Adv Colloid Interface Sci. 2020 Jan; 275:102061. https://doi.org/10.1016/j.cis.2019.102061JahanRBodrattiAMTsianouMAlexandridisP. Biosurfactants, natural alternatives to synthetic surfactants: physicochemical properties and applications. Adv Colloid Interface Sci.2020Jan; 275:102061. https://doi.org/10.1016/j.cis.2019.10206110.1016/j.cis.2019.10206131767119Search in Google Scholar

Jemil N, Hmidet N, Manresa A, Rabanal F, Nasri M. Isolation and characterization of kurstakin and surfactin isoforms produced by Enterobacter cloacae C3 strain. J Mass Spectrom. 2019 Jan;54(1):7–18. https://doi.org/10.1002/jms.4302JemilNHmidetNManresaARabanalFNasriM. Isolation and characterization of kurstakin and surfactin isoforms produced by Enterobacter cloacae C3 strain. J Mass Spectrom.2019Jan;54(1):718. https://doi.org/10.1002/jms.430210.1002/jms.430230324699Search in Google Scholar

Joshi PA, Shekhawat DB. Effect of carbon and nitrogen source on biosurfactant production by biosurfactant producing bacteria isolated from petroleum contaminated site. Adv Appl Sci Res. 2014; 5:159–164.JoshiPAShekhawatDB. Effect of carbon and nitrogen source on biosurfactant production by biosurfactant producing bacteria isolated from petroleum contaminated site. Adv Appl Sci Res.2014; 5:159164.Search in Google Scholar

Khademolhosseini R, Jafari A, Mousavi SM, Hajfarajollah H, Noghabi KA, Manteghian M. Physicochemical characterization and optimization of glycolipid biosurfactant production by a native strain of Pseudomonas aeruginosa HAK01 and its performance evaluation for the MEOR process. RSC Advances. 2019 Mar 11; 9(14):7932–7947. https://doi.org/10.1039/C8RA10087JKhademolhosseiniRJafariAMousaviSMHajfarajollahHNoghabiKAManteghianM. Physicochemical characterization and optimization of glycolipid biosurfactant production by a native strain of Pseudomonas aeruginosa HAK01 and its performance evaluation for the MEOR process. RSC Advances.2019Mar11; 9(14):79327947. https://doi.org/10.1039/C8RA10087J10.1039/C8RA10087J906125335521199Search in Google Scholar

Khopade A, Biao R, Liu X, Mahadik K, Zhang L, Kokare C. Production and stability studies of the biosurfactant isolated from marine Nocardiopsis sp. B4. Desalination. 2012 Jan;285:198–204. https://doi.org/10.1016/j.desal.2011.10.002KhopadeABiaoRLiuXMahadikKZhangLKokareC. Production and stability studies of the biosurfactant isolated from marine Nocardiopsis sp. B4. Desalination.2012Jan;285:198204. https://doi.org/10.1016/j.desal.2011.10.00210.1016/j.desal.2011.10.002Search in Google Scholar

Li C, Fu X, Luo F, Huang Q. Effects of maltose on stability and rheological properties of orange oil-in-water emulsion formed by OSA modified starch. Food Hydrocoll. 2013 Jul;32(1):79–86. https://doi.org/10.1016/j.foodhyd.2012.12.004LiCFuXLuoFHuangQ. Effects of maltose on stability and rheological properties of orange oil-in-water emulsion formed by OSA modified starch. Food Hydrocoll.2013Jul;32(1):7986. https://doi.org/10.1016/j.foodhyd.2012.12.00410.1016/j.foodhyd.2012.12.004Search in Google Scholar

Luong TM, Ponamoreva ON, Nechaeva IA, Petrikov KV, Delegan YA, Surin AK, Linklater D, Filonov AE. Characterization of biosurfactants produced by the oil-degrading bacterium Rhodococcus erythropolis S67 at low temperature. World J Microbiol Biotechnol. 2018 Feb;34(2):20. https://doi.org/10.1007/s11274-017-2401-8LuongTMPonamorevaONNechaevaIAPetrikovKVDeleganYASurinAKLinklaterDFilonovAE. Characterization of biosurfactants produced by the oil-degrading bacterium Rhodococcus erythropolis S67 at low temperature. World J Microbiol Biotechnol.2018Feb;34(2):20. https://doi.org/10.1007/s11274-017-2401-810.1007/s11274-017-2401-829302805Search in Google Scholar

Mandal SM, Barbosa AEAD, Franco OL. Lipopeptides in microbial infection control: scope and reality for industry. Biotechnol Adv. 2013 Mar;31(2):338–345. https://doi.org/10.1016/j.biotechadv.2013.01.004MandalSMBarbosaAEADFrancoOL. Lipopeptides in microbial infection control: scope and reality for industry. Biotechnol Adv.2013Mar;31(2):338345. https://doi.org/10.1016/j.biotechadv.2013.01.00410.1016/j.biotechadv.2013.01.00423318669Search in Google Scholar

McDonnell G, Russell AD. Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev. 1999 Jan 01;12(1): 147–179. https://doi.org/10.1128/CMR.12.1.147McDonnellGRussellAD. Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev.1999Jan01;12(1): 147179. https://doi.org/10.1128/CMR.12.1.14710.1128/CMR.12.1.147889119880479Search in Google Scholar

Mouafo TH, Mbawala A, Ndjouenkeu R. Effect of different carbon sources on biosurfactants’ production by three strains of Lactobacillus spp. BioMed Res Int. 2018;2018:1–15. https://doi.org/10.1155/2018/5034783MouafoTHMbawalaANdjouenkeuR. Effect of different carbon sources on biosurfactants’ production by three strains of Lactobacillus spp. BioMed Res Int.2018;2018:115. https://doi.org/10.1155/2018/503478310.1155/2018/5034783583206729651438Search in Google Scholar

Moya Ramírez I, Tsaousi K, Rudden M, Marchant R, Jurado Alameda E, García Román M, Banat IM. Rhamnolipid and surfactin production from olive oil mill waste as sole carbon source. Bioresour Technol. 2015 Dec;198:231–236. https://doi.org/10.1016/j.biortech.2015.09.012Moya RamírezITsaousiKRuddenMMarchantRJurado AlamedaEGarcía RománMBanatIM. Rhamnolipid and surfactin production from olive oil mill waste as sole carbon source. Bioresour Technol.2015Dec;198:231236. https://doi.org/10.1016/j.biortech.2015.09.01210.1016/j.biortech.2015.09.01226398666Search in Google Scholar

Müller MM, Kügler JH, Henkel M, Gerlitzki M, Hörmann B, Pöhnlein M, Syldatk C, Hausmann R. Rhamnolipids – next generation surfactants? J Biotechnol. 2012 Dec;162(4):366–380. https://doi.org/10.1016/j.jbiotec.2012.05.022MüllerMMKüglerJHHenkelMGerlitzkiMHörmannBPöhnleinMSyldatkCHausmannR. Rhamnolipids – next generation surfactants?J Biotechnol.2012Dec;162(4):366380. https://doi.org/10.1016/j.jbiotec.2012.05.02210.1016/j.jbiotec.2012.05.02222728388Search in Google Scholar

Nurfarahin A, Mohamed M, Phang L. Culture medium development for microbial-derived surfactants production – An overview. Molecules. 2018 May 01;23(5):1049. https://doi.org/10.3390/molecules23051049NurfarahinAMohamedMPhangL. Culture medium development for microbial-derived surfactants production – An overview. Molecules.2018May01;23(5):1049. https://doi.org/10.3390/molecules2305104910.3390/molecules23051049609960129723959Search in Google Scholar

Nwaguma IV, Chikere CB, Okpokwasili GC. Isolation, characterization, and application of biosurfactant by Klebsiella pneumoniae strain IVN51 isolated from hydrocarbon-polluted soil in Ogoniland, Nigeria. Bioresour Bioprocess. 2016 Dec;3(1):40. https://doi.org/10.1186/s40643-016-0118-4NwagumaIVChikereCBOkpokwasiliGC. Isolation, characterization, and application of biosurfactant by Klebsiella pneumoniae strain IVN51 isolated from hydrocarbon-polluted soil in Ogoniland, Nigeria. Bioresour Bioprocess.2016Dec;3(1):40. https://doi.org/10.1186/s40643-016-0118-410.1186/s40643-016-0118-4Search in Google Scholar

Onwosi CO, Odibo FJC. Effects of carbon and nitrogen sources on rhamnolipid biosurfactant production by Pseudomonas nitroreducens isolated from soil. World J Microbiol Biotechnol. 2012 Mar;28(3):937–942. https://doi.org/10.1007/s11274-011-0891-3OnwosiCOOdiboFJC. Effects of carbon and nitrogen sources on rhamnolipid biosurfactant production by Pseudomonas nitroreducens isolated from soil. World J Microbiol Biotechnol.2012Mar;28(3):937942. https://doi.org/10.1007/s11274-011-0891-310.1007/s11274-011-0891-322805814Search in Google Scholar

Qazi MA, Malik ZA, Qureshi GD, Hameed A, Ahmed S. Yeast extract as the most preferable substrate for optimized biosurfactant production by rhlB gene positive Pseudomonas putida SOL-10 isolate. J Bioremediat Biodegrad. 2013;4:204.QaziMAMalikZAQureshiGDHameedAAhmedS. Yeast extract as the most preferable substrate for optimized biosurfactant production by rhlB gene positive Pseudomonas putida SOL-10 isolate. J Bioremediat Biodegrad.2013;4:204.Search in Google Scholar

Ranasalva N, Sunil R, Poovarasan G. Importance of biosurfactant in food industry. IOSR J Agric Vet Sci. 2014;7(5):06–09. https://doi.org/10.9790/2380-07540609RanasalvaNSunilRPoovarasanG. Importance of biosurfactant in food industry. IOSR J Agric Vet Sci.2014;7(5):0609. https://doi.org/10.9790/2380-0754060910.9790/2380-07540609Search in Google Scholar

Rane AN, Baikar VV, Ravi Kumar V, Deopurkar RL. Agro-industrial wastes for production of biosurfactant by Bacillus subtilis ANR 88 and its application in synthesis of silver and gold nanoparticles. Front Microbiol. 2017 Mar 24;8:492. https://doi.org/10.3389/fmicb.2017.00492RaneANBaikarVVRavi KumarVDeopurkarRL. Agro-industrial wastes for production of biosurfactant by Bacillus subtilis ANR 88 and its application in synthesis of silver and gold nanoparticles. Front Microbiol.2017Mar24;8:492. https://doi.org/10.3389/fmicb.2017.0049210.3389/fmicb.2017.00492536416628392783Search in Google Scholar

Rufino RD, de Luna JM, de Campos Takaki GM, Sarubbo LA. Characterization and properties of the biosurfactant produced by Candida lipolytica UCP 0988. Electron J Biotechnol. 2014 Jan;17(1):34–38. https://doi.org/10.1016/j.ejbt.2013.12.006RufinoRDde LunaJMde Campos TakakiGMSarubboLA. Characterization and properties of the biosurfactant produced by Candida lipolytica UCP 0988. Electron J Biotechnol.2014Jan;17(1):3438. https://doi.org/10.1016/j.ejbt.2013.12.00610.1016/j.ejbt.2013.12.006Search in Google Scholar

Sekhon Randhawa KK, Rahman PKSM. Rhamnolipid biosurfactants – past, present, and future scenario of global market. Front Microbiol. 2014 Sep 02;5:454. https://doi.org/10.3389/fmicb.2014.00454Sekhon RandhawaKKRahmanPKSM. Rhamnolipid biosurfactants – past, present, and future scenario of global market. Front Microbiol.2014Sep02;5:454. https://doi.org/10.3389/fmicb.2014.0045410.3389/fmicb.2014.00454415138225228898Search in Google Scholar

Sharma D, Saharan BS. Functional characterization of biomedical potential of biosurfactant produced by Lactobacillus helveticus. Biotechnol Rep (Amst). 2016 Sep;11:27–35. https://doi.org/10.1016/j.btre.2016.05.001SharmaDSaharanBS. Functional characterization of biomedical potential of biosurfactant produced by Lactobacillus helveticus. Biotechnol Rep (Amst).2016Sep;11:2735. https://doi.org/10.1016/j.btre.2016.05.00110.1016/j.btre.2016.05.001504230128352537Search in Google Scholar

Sheppard FC, Mason DJ, Bloomfield SF, Gant VA. Flow cytometric analysis of chlorhexidine action. FEMS Microbiol Lett. 1997 Sep;154(2):283–288. https://doi.org/10.1111/j.1574-6968.1997.tb12657.xSheppardFCMasonDJBloomfieldSFGantVA. Flow cytometric analysis of chlorhexidine action. FEMS Microbiol Lett.1997Sep;154(2):283288. https://doi.org/10.1111/j.1574-6968.1997.tb12657.x10.1111/j.1574-6968.1997.tb12657.x9311126Search in Google Scholar

Shete AM, Wadhawa G, Banat IM, Chopade BA. Mapping of patents on bioemulsifier and biosurfactant: a review. J Sci Ind Res (India). 2006;65:91–115.SheteAMWadhawaGBanatIMChopadeBA. Mapping of patents on bioemulsifier and biosurfactant: a review. J Sci Ind Res (India).2006;65:91115.Search in Google Scholar

Singh P, Tiwary BN. Isolation and characterization of glycolipid biosurfactant produced by a Pseudomonas otitidis strain isolated from Chirimiri coal mines, India. Bioresour Bioprocess. 2016 Dec; 3(1):42. https://doi.org/10.1186/s40643-016-0119-3SinghPTiwaryBN. Isolation and characterization of glycolipid biosurfactant produced by a Pseudomonas otitidis strain isolated from Chirimiri coal mines, India. Bioresour Bioprocess.2016Dec; 3(1):42. https://doi.org/10.1186/s40643-016-0119-310.1186/s40643-016-0119-3Search in Google Scholar

Sobrinho HBS, Luna JM, Rufino RD, Porto ALF, Sarubbo LA. Biosurfactants: classification, properties and environmental applications. In: Govil JN (editor). Recent development in biotechnology, vol.11. Houston (USA): Studium Press LLC; 2014. p. 303–330.SobrinhoHBSLunaJMRufinoRDPortoALFSarubboLA. Biosurfactants: classification, properties and environmental applications. In: GovilJN (editor). Recent development in biotechnology, vol.11. Houston (USA): Studium Press LLC; 2014. p. 303330.Search in Google Scholar

Varjani SJ, Upasani VN. Carbon spectrum utilization by an indigenous strain of Pseudomonas aeruginosa NCIM 5514: Production, characterization and surface active properties of biosurfactant. Bioresour Technol. 2016 Dec;221:510–516. https://doi.org/10.1016/j.biortech.2016.09.080VarjaniSJUpasaniVN. Carbon spectrum utilization by an indigenous strain of Pseudomonas aeruginosa NCIM 5514: Production, characterization and surface active properties of biosurfactant. Bioresour Technol.2016Dec;221:510516. https://doi.org/10.1016/j.biortech.2016.09.08010.1016/j.biortech.2016.09.08027677153Search in Google Scholar

Walter V, Syldatk C, Hausmann R. Screening concepts for the isolation of biosurfactant producing microorganisms. In: Sen R (editor). Biosurfactants. Advances in Experimental Medicine and Biology, vol. 672. New York (USA): Springer; 2010.WalterVSyldatkCHausmannR. Screening concepts for the isolation of biosurfactant producing microorganisms. In: SenR (editor). Biosurfactants. Advances in Experimental Medicine and Biology, vol. 672. New York (USA): Springer; 2010.10.1007/978-1-4419-5979-9_120545270Search in Google Scholar

Whittenbury R, Phillips KC, Wilkinson JF. Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol. 1970 May 01;61(2):205–218. https://doi.org/10.1099/00221287-61-2-205WhittenburyRPhillipsKCWilkinsonJF. Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol.1970May01;61(2):205218. https://doi.org/10.1099/00221287-61-2-20510.1099/00221287-61-2-2055476891Search in Google Scholar

Wong-Villarreal A, Reyes-López L, Corzo-González H, Blanco-González C, Yáñez-Ocampo G. Characterization of bacteria isolation of bacteria from Pinyon rhizosphere producing biosurfactant from agro-industrial waste. Pol J Microbiol. 2016 Jun 7;65(2):183–189. https://doi.org/10.5604/17331331.1204478Wong-VillarrealAReyes-LópezLCorzo-GonzálezHBlanco-GonzálezCYáñez-OcampoG. Characterization of bacteria isolation of bacteria from Pinyon rhizosphere producing biosurfactant from agro-industrial waste. Pol J Microbiol.2016Jun7;65(2):183189. https://doi.org/10.5604/17331331.120447810.5604/17331331.120447830015442Search in Google Scholar

Wu JY, Yeh KL, Lu WB, Lin CL, Chang JS. Rhamnolipid production with indigenous Pseudomonas aeruginosa EM1 isolated from oil-contaminated site. Bioresour Technol. 2008 Mar;99(5):1157–1164. https://doi.org/10.1016/j.biortech.2007.02.026WuJYYehKLLuWBLinCLChangJS. Rhamnolipid production with indigenous Pseudomonas aeruginosa EM1 isolated from oil-contaminated site. Bioresour Technol.2008Mar;99(5):11571164. https://doi.org/10.1016/j.biortech.2007.02.02610.1016/j.biortech.2007.02.02617434729Search in Google Scholar

Zhang J, Xue Q, Gao H, Lai H, Wang P. Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery. Microb Cell Fact. 2016 Dec;15(1):168. https://doi.org/10.1186/s12934-016-0574-8ZhangJXueQGaoHLaiHWangP. Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery. Microb Cell Fact.2016Dec;15(1):168. https://doi.org/10.1186/s12934-016-0574-810.1186/s12934-016-0574-8504843627716284Search in Google Scholar

Zhang M, Yewe-Siang Lee Shee We M, Wu H. Direct emulsification of crude glycerol and bio-oil without addition of surfactant via ultrasound and mechanical agitation. Fuel. 2018 Sep;227:183–189. https://doi.org/10.1016/j.fuel.2018.04.099ZhangMYewe-Siang Lee Shee WeMWuH. Direct emulsification of crude glycerol and bio-oil without addition of surfactant via ultrasound and mechanical agitation. Fuel.2018Sep;227:183189. https://doi.org/10.1016/j.fuel.2018.04.09910.1016/j.fuel.2018.04.099Search in Google Scholar

eISSN:
2544-4646
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Life Sciences, Microbiology and Virology