[
Barosz, P., Gołda, G., Kampa, A., 2020. Efficiency Analysis of Manufacturing Line with Industrial Robots and Human Operators. Applied Sciences, 10(8), 2862, DOI: 10.3390/app10082862.
]Search in Google Scholar
[
Banks, J., Carson, J., 2013. Discrete-Event System Simulation; Pearson New International Edition; Pearson Education India: Noida, India.
]Search in Google Scholar
[
Bieńkowski, M., 2018. Innowacyjne rozwiązania dla Przemysłu 4.0. Automatyka, 26-34, DOI: 10.29119/1641-3466.2022.160.33.
]Search in Google Scholar
[
Daroń, M., 2022. Simulations in planning logistics processes as a tool of decision-making in manufacturing companies. Production Engineering Archives, 28(4) 300-308, DOI: 10.30657/pea.2022.28.38
]Search in Google Scholar
[
Dubaj, K., 2023. Practical application of flexsim in simulation modeling of production systems. Zeszyty Naukowe Akademii Górnośląskiej, 6, 23 – 31, DOI: 10.53259/2023.6.03.
]Search in Google Scholar
[
Ferro, R., Cordeiro, G.A., Ordóñez, R.E.C., Beydoun, G., Shukla, N., 2021. An Optimization Tool for Production Planning: A Case Study in a Textile Industry. Applied Sciences, 11(18), 8312. DOI: 10.3390/app11188312
]Search in Google Scholar
[
Gao, K., Huang, Y., Sadollah, A., 2020. A review of energy-efficient scheduling in intelligent production systems. Complex Intell. Syst. 6, 237–249, DOI: 10.1007/s40747-019-00122-6.
]Search in Google Scholar
[
Medan, N., Ravai-nagy, S., 2020. Modelling, simulating and analysing a process flow for a machining part using flexsim software, Volume 65, Issue 4, 1229-1234.
]Search in Google Scholar
[
Jamwal, A., Agrawal, R., Sharma, M., Giallanza, A., 2021 Industry 4.0 Technologies for Manufacturing Sustainability: A Systematic Review and Future Research Directions. Appl. Sci. 11, 5725, DOI: 10.3390/app11125725
]Search in Google Scholar
[
Jasiulewicz - Kaczmarek, M., Gola, A., 2019. Maintenance 4.0 Technologies for Sustainable Manufacturing - an Overview, Volume 52, Issue 10, 91-96, DOI: 10.1016/j.ifacol.2019.10.005.
]Search in Google Scholar
[
Kampa, A., 2023. Modeling and Simulation of a Digital Twin of a Production System for Industry 4.0 with Work-in-Process Synchronization. Applied Sciences. 2023; 13(22):12261. DOI: 10.3390/app132212261.
]Search in Google Scholar
[
Kikolski, M., 2017. Study of Production Scenarios with the Use of Simulation Models. Procedia Engineering, 182, 321-328, DOI: 10.1016/j.proeng.2017.03.102.
]Search in Google Scholar
[
Kochańska, J., Burduk, A., 2023. A Method of Assessing the Effectiveness of the Use of Available Resources When Implementing Production Processes. Applied Sciences, 13(13), 7764, DOI: 10.3390/app13137764.
]Search in Google Scholar
[
Luściński, S., Ivanov, V., 2020. A Simulation Study of Industry 4.0 Factories Based on the Ontology on Flexibility with Using FlexSim Software. Management and Production Engineering Review, 11, 74-83, DOI: 10.24425/mper.2020.134934.
]Search in Google Scholar
[
López de Lacalle, L.N., Posada, J., 2022. New Industry 4.0 Advances in Industrial IoT and Visual Computing for Manufacturing Processes: Volume II, Applied Sciences 12, no. 15: 7952, DOI: 10.3390/app12157952
]Search in Google Scholar
[
Pawlak, S., Małysa, T., Fornalczyk, A., 2024. Analysis of Production Process Parameters Using Computer Simulation at the Planning Stage. Applied Sciences, 14(23), 10863. DOI: 10.3390/app142310863
]Search in Google Scholar
[
Pech, M., Vrchota, J., 2020. Classification of Small- and Medium-Sized Enterprises Based on the Level of Industry 4.0 Implementation” Applied Sciences, 10(15), 5150. DOI: 10.3390/app10155150.
]Search in Google Scholar
[
Rashid, A., Tjahjono, B., 2016. Achieving manufacturing excellence through the integration of enterprise systems and simulation, Production Planning & Control, 27(10), 837–852, DOI: 10.1080/09537287.2016.1143132.
]Search in Google Scholar
[
Richnák, P., 2022. Current Trend of Industry 4.0 in Logistics and Transformation of Logistics Processes Using Digital Technologies:An Empirical Study in the Slovak Republi, Logistics, 6(4), 79, DOI: 10.3390/logistics6040079.
]Search in Google Scholar
[
Rüßmann, M., Lorenz, M., Gerbert, P., Waldner, M., Justus, J., Engel, P., Harnisch, M., 2015. Industry 4.0: The Future of Productivity and Growth in Manufacturing Industries. Boston Consulting Group, 9, 54-89.
]Search in Google Scholar
[
Rüttimann, B., i Stöckli, M., 2020. From Batch & Queue to Industry 4.0— Type Manufacturing Systems: A Taxonomy of Alternative Production Models. JSSM, 13, 299-316, DOI: 10.4236/jssm.2020.132019.
]Search in Google Scholar
[
Zhong, R.Y., Xu, X., Klotz, E., 2017. Intelligent Manufacturing in the Context of Industry 4.0: A Review. Engineering, 3(5), 616-630. DOI: 10.1016/J.ENG.2017.05.015.
]Search in Google Scholar
[
Sujová, E., Vysloužilová, D., Koleda, P., Gajdzik, B., 2023. Research on the Evaluation of the Efficiency of Production Processes Through the Implementation of Key Performance Indicators. Management Systems in Production Engineering, 31(4), 404-410, DOI:10.2478/mspe-2023-0045.
]Search in Google Scholar