Acceso abierto

Evaluation of the stress-strain state of the RC beam with the use of DIC

, , , ,  y   
21 nov 2024

Cite
Descargar portada

ACI Committee 318, 2019. Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary (ACI 318R-19); American Concrete Institute: Farmington Hills, MI, USA, 623p. Search in Google Scholar

Adamczak-Bugno, A., Lipiec, S., Vavruš, M., Koteš, P., 2022. Non-Destructive Methods and Numerical Analysis Used for Monitoring and Analysis of Fibre Concrete Deformations. Materials, 15, 7268. DOI: 10.3390/ma15207268 Search in Google Scholar

Bischoff, P.H., 2005. Reevaluation of deflection prediction for concrete beams reinforced with steel and fiber-reinforced polymer bars. J. Struct. Eng., 131, 752–767. DOI: 10.1061/(ASCE)0733-9445(2005)131:5(752) Search in Google Scholar

Blikharskyy, Y., Kopiika, N., Khmil, R., Selejdak, J., Blikharskyy Z., 2022. Review of Development and Application of Digital Image Correlation Method for Study of Stress–Strain State of RC Structures. Appl. Sci., 12, 10157. DOI: 10.3390/app121910157 Search in Google Scholar

Blikharskyy, Y., Selejdak, J., 2021. Influence of the percentage of reinforcement damage on the bearing-capacity of RC beams. Construction of Optimized Energy Potential (CoOEP), 10(1), 145–150. DOI:10.17512/bozpe.2021.1.15 Search in Google Scholar

Blikharskyy, Y., Selejdak, J., Kopiika, N., 2021a. Corrosion fatigue damages of rebars under loading in time. Materials, 14(12), 3416. DOI: 10.3390/ma14123416 Search in Google Scholar

Blikharskyy, Y., Vashkevych, R., Kopiika, N., Bobalo, T., Blikharskyy, Z., 2021b. Calculation residual strength of reinforced concrete beams with damages, which occurred during loading. IOP Conf. Ser. Mater. Sci. Eng., 1021, 012012. DOI: 10.1088/1757-899X/1021/1/012012 Search in Google Scholar

Blikharskyy, Z., Sobol, K., Markiv, T., Selejdak, J., 2021c. Properties of Concretes Incorporating Recycling Waste and Corrosion Susceptibility of Reinforcing Steel Bars. Materials, 14(10), 2638. https://doi.org/10.3390/ma14102638 Search in Google Scholar

Bouzid, H., Rabia, B., Daouadji, T.H., 2021. Deflection ductility of RC beams under mid-span load. Structural Engineering and Mechanics, 80(5), 585-594. DOI: 10.12989/sem.2021.80.5.585 Search in Google Scholar

Branson, D.E., 1965. Instantaneous and Time-Dependent Deflections on Simple and Continuous Reinforced Concrete Beams. Alabama Highway Department, Bureau of Public Roads: Montgomery, AL, USA, HPR Report No. 7, Part 1, 1–78. Search in Google Scholar

Campione, G., Ferrotto, M.F., Papia, M., 2020. Flexural Response of RC Beams Failing in Shear. Pract. Period. Struct. Des. Constr., 25(4): 04020028. DOI: 10.1061/(ASCE)SC.1943-5576.0000507 Search in Google Scholar

Chen, M.T., Ho, J.C.M., 2015. Concurrent flexural strength and ductility design of RC beams via strain-gradient-dependent concrete stress–strain curve. Struct. Design Tall Spec. Build. 24, 629–652. DOI: https://doi.org/10.1002/tal.1203 Search in Google Scholar

Cintron, R., Saouma, V., 2008. Strain measurements with the digital image correlation system Vic-2D. Boulder, Colorado. Available online: https://smtl.colorado.edu/Technical_Documents/37_Strain_Measurements_with_the_Digital_Image_Correlation_System_Vic-2D.pdf (accessed on 28 November, 2022). Search in Google Scholar

Cruz, H., Aval, S.F., Dhawan, K. Pourhomayoun, M., Rodriguez-Nik, T., Mazari, M., 2019. Non-Contact Surface Displacement Measurement for Concrete Samples Using Image Correlation Technique. In Proceedings of the 2019 International Conference on Image Processing, Computer Vision, & Pattern Recognition, Las Vegas, NV, USA, 29 July–1 August 2019; 151–156. Search in Google Scholar

Czajkowska, A., Raczkiewicz, W., Bacharz, M., Bacharz, K., 2020. Influence of maturing conditions of steel-fiber reinforced concrete on its selected parameters. Construction of Optimized Energy Potential (CoOEP), 9(1), 47-54. DOI: 10.17512/bozpe.2020.1.05 Search in Google Scholar

Czajkowska, A., Raczkiewicz, W., Ingaldi, M., 2023. Determination of the linear correlation coefficient between Young’s modulus and the compressive strength in fibre-reinforced concrete based on experimental studies. Production Engineering Archives, 29(3), 288–297. DOI: 10.30657/pea.2023.29.33 Search in Google Scholar

DBN V.2.6-98:2009. Structures of buildings and structures. Concrete and reinforced concrete structures. General provisions. Kyiv, Ministry of Regional Development of Ukraine, 2011. Search in Google Scholar

Devendiran, D.K., Banerjee, S., 2023. Contribution of vertical ground motion on seismic response of multi-span simply-supported T-girder RC bridges in the presence of corrosion-fatigue degradation. Engineering Structures, 294, https://doi.org/10.1016/j.engstruct.2023.116720 Search in Google Scholar

Dizaji, M.S., Harris, D.K., Kassner, B., Hill, J.C., 2021. Full-field non-destructive image-based diagnostics of a structure using 3D digital image correlation and laser scanner techniques. J. Civ. Struct. Health Monit., 11, 1415–1428. DOI: 10.1007/s13349-021-00516-6 Search in Google Scholar

Dorofeyev, V., Pushkar, N., 2023. The Bearing-Capacity of Precast Beams with Vertical Contact Plane. Lecture Notes in Civil Engineering, 290 LNCE, pp. 67–75. 10.1007/978-3-031-14141-6_7 Search in Google Scholar

DSTU B V.1.2-3:2006 Deflections and displacements. Design requirements. Kyiv, Ministry of Regional Development of Ukraine, 2006. Search in Google Scholar

DSTU B V.2.6-156:2010 Structures of buildings and structures. Concrete and reinforced concrete structures made of heavy concrete. Design rules. Kyiv, Ministry of Regional Development of Ukraine, 2011. Search in Google Scholar

Eurocode 2: Design of concrete structures - Part 1-1 : General rules and rules for buildings, 2004. Search in Google Scholar

Haytham, B., Benferhat, R., Tahar, H. D., 2022. Estimation of ultimate deflection of RC beams using CASTEM software. Conference Paper. February 2022. International Aegean Conferences. Innovation Technologies & Engineering-V. February 25-26, 2022. IZMIR, TURKEY Search in Google Scholar

Hu, H., Lopes, S.M.R., Lopes, A.V., Lou, T., 2022. Flexural Response of Axially Restricted RC Beams: Numerical and Theoretical Study. Materials, 15, 6052. DOI: 10.3390/ma15176052 Search in Google Scholar

Hunegnaw, C.B., Wondimu, T., 2021. Effect of orientation of stirrups in combination with shear span to depth ratio on shear capacity of RC beams, HELIYON, HLY 8193, S2405-8440(21)02296-9, 1-15. DOI: 10.1016/j.heliyon.2021.e08193 Search in Google Scholar

Ilnytskyy, B.M., Kramarchuk, A.P., Bula, S.S., Bobalo, T.V., 2019. Study of the vibration influence on load-bearing floor structures in case of machinery operation. IOP Conference Series: Materials Science and Engineering, 708(1), 012052. 10.1088/1757-899X/708/1/012052 Search in Google Scholar

Jagusiak-Kocik, M., Ulewicz, R. 2023. Implementation of the QFD Method in a Construction Industry Company. Lecture Notes in Civil Engineering, 290 LNCE, 416–423. https://doi.org/10.1007/978-3-031-14141-6_42 Search in Google Scholar

Katunský, D., Katunská, J., Tóth, S., 2015. Possibility of choices industrial hall object reconstruction. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, 2(5), 389–396. Search in Google Scholar

Kim, S.-W., 2021. Prediction of Deflection of Shear-Critical RC Beams Using Compatibility-Aided Truss Model. Appl. Sci., 11, 11478. DOI: 10.3390/app112311478 Search in Google Scholar

Kopiika, N., Selejdak, J., Blikharskyy, Y., 2022. Specifics of physico-mechanical characteristics of thermally-hardened rebar. Prod. Eng. Arch., 28, 73–81. DOI:10.30657/pea.2022.28.09 Search in Google Scholar

Kopiika N., Vegera P., Vashkevych R., Blikharskyy Z. 2021. Stress-strain state of damaged reinforced concrete bended elements at operational load level. Prod. Eng. Arch., 27, 242–247. DOI: 10.30657/pea.2021.27.32 Search in Google Scholar

Kos, Z., Klymenko, Y., Karpiuk, I., Grynyova, I., 2022. Bearing Capacity near Support Areas of Continuous Reinforced Concrete Beams and High Grillages. Appl. Sci., 12, 685. DOI:10.3390/app12020685 Search in Google Scholar

Koteš, P., Kotula, P., Odrobiňák J., Prokop, J., 2022. Diagnostics and Evaluation of Two Atypical Girder Bridges on Railway Line. Key Engineering Materials, August 2022. DOI:10.4028/p-i418x0 Search in Google Scholar

Koteš, P., Zahuranec, M., Vavruš, M., 2023. Diagnostic and Design of Reconstruction of Building Váhostav. Lecture Notes in Civil Engineering, 322 LNCE, pp. 165–174. 10.1007/978-3-031-26879-3_13 Search in Google Scholar

Kramarchuk, A., Ilnytskyy, B., Kopiika, N., 2023. Ensuring the Load-Bearing Capacity of Monolithic Reinforced Concrete Slab Damaged by Cracks in the Compressed Zone. EcoComfort, LNCE 290, 1–13, 2023. DOI: 10.1007/978-3-031-14141-6_21 Search in Google Scholar

Kramarchuk, A., Ilnytskyy, B., Lytvyniak, O., 2018. Arrangement of the foundations under the new hotel in Lviv. Matec Web of Conferences, 183, 139366. 10.1051/matecconf/201818302007. Search in Google Scholar

Kramarchuk, A., Ilnytskyy, B., Hladyshev, D., Lytvyniak, O., 2021. Strengthening of the reinforced concrete tank of anaerobic purification plants with the manufacture of biogas, damaged as a result of design and construction errors. IOP Conference Series: Materials Science and Engineering, 1021(1), 012017. DOI: 10.1088/1757-899X/1021/1/012017 Search in Google Scholar

Lenkovskiy, T.M., Kulyk, V.V., Duriagina, Z.A., Kovalchuk, R.A., Topilnytskyy, V.H., Vira, V.V., Tepla, T.L., 2017. Mode I and mode II fatigue crack growth resistance characteristics of high tempered 65G steel. Archives of Materials Science and Engineering, 84(1), 34–41. DOI: 10.5604/01.3001.0010.3029 Search in Google Scholar

Li, B., Zeng, L., Guo, X., Wang, Y., Deng, Z. 2022a. Flexural Behavior of Full-Scale Damaged Hollow RC Beams Strengthened with Prestressed SCFRP Plate under Four-Point Bending. Polymers, 14, 2939. DOI: 10.3390/polym14142939 Search in Google Scholar

Li, W., Huang, W., Fang, Y., Zhang, K., Zongzhi, Liu, Kong, Z., 2022b. Experimental and theoretical analysis on shear behavior of RC beams reinforced with GFRP stirrups, Structures 46, 1753–1763. DOI: 10.1016/j.istruc.2022.10.138 Search in Google Scholar

Li, W., Huang, Y., Jiang, Y., Shi, T., Xing, F., 2020. Application of DIC Technology to Shear Crack Measurement of Concrete Beam. In Advances in 3D Image and Graphics Representation, Analysis, Computing and Information Technology: Algorithms and Applications, Proceedings of IC3DIT; Springer: Berlin/Heidelberg, Germany, 180, 339–346. DOI: 10.1007/978-981-15-3867-4_39 Search in Google Scholar

Lipiński, T., 2023. The Role of the Distance between Fine Non-Metallic Oxide Inclusions on the Fatigue Strength of Low-Carbon Steel. Applied Sciences (Switzerland), 13(14), 8354. 10.3390/app13148354 Search in Google Scholar

Lipiński, T., Ulewicz, R. 2023. Degradation of R35 Steel in 5% NaCl environment at 10°C. Materials Research Proceedings, 34, pp. 77–86. 10.21741/9781644902691-10 Search in Google Scholar

Lipiński, T., Wach, A., 2020. Influence of inclusions on bending fatigue strength coefficient the medium carbon steel melted in an electric furnace. Production Engineering Archives, 26(3), pp. 88–91. 10.30657/pea.2020.26.18 Search in Google Scholar

Malíková, L., Miarka, P., Šimonová, H., Kucharczyková, B., 2020. Deflection of an eccentric crack under mixed-mode conditions in an SCB specimen. Construction of Optimized Energy Potential (CoOEP), 9(2), 79-87. DOI: 10.17512/bozpe.2020.2.09 Search in Google Scholar

Niezrecki, C., Baqersad, J., Sabato, A., 2018. Digital Image Correlation Techniques for Non-Destructive Evaluation and Structural Health Monitoring. Handb. Adv. Non-Destr. Eval., 1–46. Available online: https://cpb-usw2.wpmucdn.com/sites.uml.edu/dist/3/262/files/2019/09/Niezrecki-eral.-2019-Digital-image-correlation-techniques-for-NDE-and-SHM.pdf (accessed on 21 November, 2022). Search in Google Scholar

Ostash, O.P., Muravs’Kyi, L.I., Voronyak, T.I., Kmet’, A.B., Andreiko, I.M., Vira, V.V., 2011. Determination of the size of the fatigue prefracture zone by the method of phase-shifting interferometry. Materials Science, 46(6), 781–788. DOI:10.1007/s11003-011-9353-1 Search in Google Scholar

Ostash, О.P., Kulyk, V.V., Poznyakov, V.D., Gaivorons’kyi, О.А., Vira, V.V., 2019. Influence of the Modes of Heat Treatment on the Strength and Cyclic Crack-Growth Resistance of 65G Steel. Materials Science, 54(6), pp. 776–782. DOI: 10.1007/s11003-019-00263-6 Search in Google Scholar

Pang, M., Shi, S., Hu, H., Lou, T., 2021. Flexural Behavior of Two-Span Continuous CFRP RC Beams. Materials, 14, 6746. DOI: 10.3390/ma14226746 Search in Google Scholar

Scanlon, A., Bischoff, P.H., 2008.Shrinkage restraint and loading history effects on deflections of flexural members. ACI Struct. J., 105(4), 498–506. Search in Google Scholar

Schreier, H., Orteu, J.J., Sutton, M.A., 2009. Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications; Springer Science & Business Media: New York, NY, USA, 2009; 322p. Search in Google Scholar

Semko, O., Filonenko, O., Yurin, O., Avramenko, Y., Mahas, N., 2023. Characteristic damages of reinforced concrete structures of the covering exposed to moisture. AIP Conference Proceedings, 2684, 030039. DOI: 10.1063/5.0120020 Search in Google Scholar

Sengun, K., Arslan, G., 2022. Investigation of the parameters affecting the behavior of RC beams strengthened with FRP. Front. Struct. Civ. Eng. 16, 729–743. DOI: 10.1007/s11709-022-0854-9. Search in Google Scholar

Sharma, G., Sharma, S., Sharma, S.K., 2021. Non-destructive evaluation of steel and GFRP reinforced beams using AE and DIC techniques. Structural Engineering and Mechanics, 77(5), 637-650 DOI: 10.12989/sem.2021.77.5.637 Search in Google Scholar

Song, L., Wang, L., Sun, H., Cui, C., Yu, Z., 2022. Fatigue Performance Prediction of RC Beams Based on Optimized Machine Learning Technology. Materials, 15, 6349. DOI: 10.3390/ma15186349. Search in Google Scholar

Speckle Pattern Fundamentals. Correlated Solutions, Inc. Knowledgebase Technical Articles, 2021. 12p. Available online: https://correlated.kayako.com/article/38-speckle-pattern-fundamentals (accessed on 20 November, 2022). Search in Google Scholar

Ulewicz, R., Novy, F., Selejdak, J. 2013. Fatigue strength of ductile iron in ultra-high cycle regime, Advanced Materials Research, 874, 43-48, DOI: 10.4028/www.scientific.net/amr.874.43 Search in Google Scholar

Vatulia, G.L., Smolyanyuk, N.V., Shevchenko, A.A., Orel, Y.F., Kovalov, M.O., 2020. Evaluation of the load-bearing capacity of variously shaped steel-concrete slabs under short term loading. IOP Conference Series: Materials Science and Engineering, 1002(1), 012007. DOI: 10.1088/1757-899X/1002/1/012007 Search in Google Scholar

Vitaliy, D., Natalia, P., Hanna, Z., 2021. The Influence of Concrete Structure on the Destruction of Reinforced Concrete Bended Elements. Lecture Notes in Civil Engineering, 100 LNCE, 103–111. DOI: 10.1007/978-3-030-57340-9_13 Search in Google Scholar

Voznyak, O., Kaplun, V., Spodyniuk, Dudkiewicz, E., Dovbush, O., Sukholova, I., Kasynets, M., 2023. Efficiency enhancing of the local capture hood due to air barriers. Pollack Periodica, 18(3), 58–64. DOI: 10.1556/606.2023.00851 Search in Google Scholar

Yang, Z., Cheng, Z., Wang T., Sun, Y., Wang, Ch., Qu, J., Zhang, D., Li, Q., 2021. Study on the Optimal Prestress Level of RC Beams Reinforced with SMA Bars. Advances in Civil Engineering, 2021, 4545413, 1-12. DOI: 10.1155/2021/4545413 Search in Google Scholar

Yuan, P., Xiao, L., Wang, X., Xu, G., 2021. Failure Mechanism of Corroded RC Beams Strengthened at Shear and Bending Positions. Engineering Structures, 240, 112382. DOI: 10.1016/j.engstruct.2021.112382 Search in Google Scholar