Acceso abierto

Surface Roughness Reduction in A Fused Filament Fabrication (FFF) Process using Central Composite Design Method


Cite

Ahn, D., Kweon, J.H., Kwon, S., Song, J., Lee, S., 2009. Representation of surface roughness in fused deposition modelling. Journal of Materials Processing Technology, 209(15–16), 5593-5600, DOI: 10.1016/j.jmatprotec.2009.05.01610.1016/j.jmatprotec.2009.05.016 Search in Google Scholar

Armillotta, A., 2006. Assessment of surface quality on textured FDM prototypes. Rapid Prototyping Journal, 12(1), 35-41, DOI: 10.1108/1355254061063725510.1108/13552540610637255 Search in Google Scholar

Box, G.E.P., Wilson, K. B., 1951. On the experimental attainment of optimum conditions. Journal of the Royal Statistical Society. Series B, 13(1), 1-45.10.1111/j.2517-6161.1951.tb00067.x Search in Google Scholar

Chohan, J.S., Singh, R., 2017. Pre and post processing techniques to improve surface characteristics of FDM parts: a state of art review and future applications. Rapid Prototyping Journal, 23(3), 495-513, DOI: 10.1108/RPJ-05-2015-005910.1108/RPJ-05-2015-0059 Search in Google Scholar

Dewey, M.P., Ulutan D., 2017. Development of laser polishing as an auxiliary post-process to improve surface quality in fused deposition modeling parts. Additive Manufacturing, 2, DOI: 10.1115/MSEC2017-302410.1115/MSEC2017-3024 Search in Google Scholar

Gurrala, P.L., Regalla, S.P., 2014. Multi-objective optimisation of strength and volumetric shrinkage of FDM parts. Virtual and Physical Prototyping, 9(2), 127-138, DOI: 10.1080/17452759.2014.89885110.1080/17452759.2014.898851 Search in Google Scholar

Kiefer, J., Wolfowitz, J., 1959. Optimum designs in regression problems. Annals of Mathematical Statistics, 30, 271–294.10.1214/aoms/1177706252 Search in Google Scholar

Kim, M.K., Lee, I.H., Kim, H.C., 2018. Effect of fabrication parameters on surface roughness of FDM parts. International Journal of Precision Engineering and Manufacturing, 19(1), 137–142, DOI: 10.1007/s12541-018-0016-010.1007/s12541-018-0016-0 Search in Google Scholar

Krolczyk, G., Raos, P., Legutko, S., 2014. Experimental Analysis of Surface Roughness and Surface Texture of Machined and Fused Deposition Modelled Parts. Tehnički vjesnik, 21(1).10.2478/mms-2014-0060 Search in Google Scholar

Li, Y., Linke, B. S., Voet, H., Falk, B., Schmitt, R., Lam, M., 2017. Cost, sustainability and surface roughness quality – A comprehensive analysis of products made with personal 3D printers. CIRP Journal of Manufacturing Science and Technology, 16, 1-11, DOI: 10.1016/j.cirpj.2016.10.00110.1016/j.cirpj.2016.10.001 Search in Google Scholar

Medellin-Castillo, H.I., Zaragoza-Siqueiros, J., 2019. Design and manufacturing strategies for fused deposition modelling in additive manufacturing: a review. Chinese Journal of Mechanical Engineering, 32(53), DOI: 10.1186/s10033-019-0368-010.1186/s10033-019-0368-0 Search in Google Scholar

Mohamed, O.A., Masood, S.H., Bhowmik, J.L., 2016. Mathematical modeling and FDM process parameters optimisation using response surface methodology based on Q-optimal design. Applied Mathematical Modelling, 40(23-24), 10052-10073, DOI: 10.1016/j.apm.2016.06.05510.1016/j.apm.2016.06.055 Search in Google Scholar

Pandey, P.M., Reddy, N.V., Dhande, S.G., 2003. Improvement of surface finish by staircase machining in fused deposition modelling. Journal of Materials Processing Technology, 132(1–3), 323-331, DOI: 10.1016/S0924-0136(02)00953-610.1016/S0924-0136(02)00953-6 Search in Google Scholar

Pandey, P.M., Reddy, N.V., 2007. Virtual hybrid-FDM system to enhance surface finish. Virtual and Physical Prototyping, 1(2), 101-116, DOI: 10.1080/1745275060076390510.1080/17452750600763905 Search in Google Scholar

Peng, A., Xiao, X., Yue, R., 2014. Process parameter optimisation for fused deposition modeling using response surface methodology combined with fuzzy inference system. International Journal of Advanced Manufacturing Technology, 73 (1-4), 87-100, DOI: 10.1007/s00170-014-5796-510.1007/s00170-014-5796-5 Search in Google Scholar

Pérez, M., Medina-Sánchez, G., García-Collado, A., Gupta, M., Carou, D., 2018. Surface quality enhancement of fused deposition modeling (FDM) printed samples based on the selection of critical printing parameters. Materials, 11(8), 1382, DOI: 10.3390/ma1108138210.3390/ma11081382612005030096826 Search in Google Scholar

Rahmati, S., Vahabli, E., 2015. Evaluation of analytical modeling for improvement of surface roughness of FDM test part using measurement results. International Journal of Advanced Manufacturing Technology, 79(5–8), 823–829, DOI: 10.1007/s00170-015-6879-710.1007/s00170-015-6879-7 Search in Google Scholar

Shirmohammadi, M., Goushchi, S.J., Keshtiban, P.M., 2021. Optimization of 3D printing process parameters to minimize surface roughness with hybrid artificial neural network model and particle swarm algorithm. Progress in Additive Manufacturing, 6, 199-215, DOI: 10.1007/s40964-021-00166-610.1007/s40964-021-00166-6 Search in Google Scholar

Singh, R., Singh, S., Singh, I. P., Fabbrocino, F., Fraternali, F., 2017. Investigation for surface finish improvement of FDM parts by vapor smoothing process. Composites Part B, 111, 228-234, DOI: 10.1016/j.compositesb.2016.11.06210.1016/j.compositesb.2016.11.062 Search in Google Scholar

Taufik, M., Jain, P., 2016. A study of build edge profile for prediction of surface roughness in fused deposition modelling. Journal of Manufacturing Science and Engineering, 138(6), DOI: 10.1115/1.403219310.1115/1.4032193 Search in Google Scholar

Tiwari, K., Kumar, S., 2018. Analysis of the factors affecting the dimensional accuracy of 3D printed products. Materials Today, 5(9), 18674-18680, DOI: 10.1016/j.matpr.2018.06.21310.1016/j.matpr.2018.06.213 Search in Google Scholar

Turner, B., Gold, S., 2015. A review of melt extrusion additive manufacturing processes: II. Materials, dimensional accuracy, and surface roughness. Rapid Prototyping Journal, 21(3), 250-261, DOI: 10.1108/RPJ-02-2013-001710.1108/RPJ-02-2013-0017 Search in Google Scholar

Vahabli, E., Rahmati, S., 2016. Application of an RBF neural network for FDM parts’ surface roughness prediction for enhancing surface quality. International Journal of Precision Engineering and Manufacturing, 17, 1589–1603, DOI: 10.1007/s12541-016-0185-710.1007/s12541-016-0185-7 Search in Google Scholar

Wu, D., Wei, Y., Terpenny, J., 2018. Predictive modeling of surface roughness in fused deposition modeling using data fusion. International Journal of Production Research, 57(3), 3992-4006, DOI: 10.1080/00207543.2018.150505810.1080/00207543.2018.1505058 Search in Google Scholar

Yodo, N., Dey, A., 2021. Multi-objective optimization for FDM process parameters with evolutionary algorithms. Fused Deposition Modeling Based 3D Printing (Editors: Dave, H. K., Davim, J. P.), Springer International Publishing, Basel, Switzerland.10.1007/978-3-030-68024-4_22 Search in Google Scholar