Acceso abierto

Identification of health risks from harmful chemical agents – review concerning bisphenol A in workplace


Cite

Auvergne, R., et al., 2013. Biobased thermosetting epoxy: present and future. Chemical Reviews, 114(2), 1082-1115.10.1021/cr3001274Search in Google Scholar

Baldwin, W.S., et. al., 1998. BG-1 ovarian cell line: an alternative model for examining estrogen-dependent growth in vitro, In Vitro Cellular and Developmental Biology-Animal, 34(8), 649-654.10.1007/s11626-996-0015-9Search in Google Scholar

Björnsdotter, M.K., Boer, J. de, and Ballesteros-Gómez, A. (2017). Bisphenol A and replacements in thermal paper, A review. Chemosphere, 182, 691-706. https://doi.org/10.1016/j.chemosphere.2017.05.07010.1016/j.chemosphere.2017.05.070Search in Google Scholar

Bsoul-Kopowska, M. 2019. Strategic Goals of the European Union in Managing Health Safety, w: System Safety: Human - Technical Facility - Environment 1(1), 180-188. DOI: 10.2478/czoto-2019-0023.10.2478/czoto-2019-0023Search in Google Scholar

Chen, D., et al., 2016. Bisphenol Analogues Other Than BPA: Environmental Occurrence, Human Exposure, and Toxicity-A Review, Environmental science and technology, 50(11), 5438-53, DOI:10.1021/acs.est.5b05387.10.1021/acs.est.5b05387Search in Google Scholar

Do Minh, T., et al., 2017. Urinary bisphenol A and obesity in adults: results from the Canadian Health Measures Survey, Health promotion and chronic disease prevention in Canada: research, policy and practice, 37(12), 403. DOI: 10.24095/hpcdp.37.12.02.10.24095/hpcdp.37.12.02Search in Google Scholar

Duan, Y., et al., 2018. Association of urinary concentrations of bisphenols with type 2 diabetes mellitus: A case-control study, Environmental Pollution, 243, 1719-1726.10.1016/j.envpol.2018.09.093Search in Google Scholar

European Food Safety Authority, 2015. Scientific opinion on the risks to public health related to the presences of bisphenol A (BPA) in foodstuffs, Excutive summary, EFSA J, 13(1), 3978.10.2903/j.efsa.2015.3978Search in Google Scholar

Ferris, J., Mahboubi, K., MacLusky, N., King, W. A., and Favetta, L. A., 2016. Bpa exposure during in vitro oocyte maturation results in dose-dependent alterations to embryo development rates, apoptosis rate, sex ratio and gene expression, Reproductive Toxicology (Elmsford, N.Y.), 59, 128-138. https://doi.org/10.1016/j.reprotox.2015.12.00210.1016/j.reprotox.2015.12.002Search in Google Scholar

Gao, H., et al., 2015. Bisphenol A and hormone-associated cancers: current progress and perspectives, Medicine, 94(1). DOI: 10.1097/MD.0000000000000211.10.1097/MD.0000000000000211Search in Google Scholar

Guzel, G., Deveci, H., Properties of polymer composites based on bisphenol A epoxy resinsw with orginal/modified steel slag, Polym.Compos., 39, 513-521. DOI:10.1002/pc.23962.10.1002/pc.23962Search in Google Scholar

Hafezi, S.A., and Abdel-Rahman, W.M., 2019. The Endocrine Disruptor Bisphenol A (BPA) Exerts a Wide Range of Effects in Carcinogenesis and Response to Therapy, Current Molecular Pharmacology, 12(3), 230–238. https://doi.org/10.2174/187446721266619030616450710.2174/1874467212666190306164507Search in Google Scholar

Hu, W., Dong, T., Wang, L., Guan, Q., Song, L., Chen, D., Wang, X., 2017. Obesity aggravates toxic effect of BPA on spermatogenesis, Environment International, 105, 56-65. https://doi.org/10.1016/j.envint.2017.04.01410.1016/j.envint.2017.04.014Search in Google Scholar

Jalal, N., et al., 2017. Bisphenol A (BPA) the mighty and the mutagenic, Toxicology reports.10.1016/j.toxrep.2017.12.013Search in Google Scholar

Lama, S., Vanacore, D., Diano, N., Nicolucci, C., Errico, S., Dallio, M., Stiuso, P. (2019). Ameliorative effect of Silybin on bisphenol A induced oxidative stress, cell proliferation and steroid hormones oxidation in HepG2 cell cultures, Scientific Reports, 9(1), 3228. https://doi.org/10.1038/s41598-019-40105-810.1038/s41598-019-40105-8Search in Google Scholar

Lee, et al., 2018. Bisphenol A exposure through receipt handling and its association with insulin resistance among female cashiers, Environment international, 117, 268-275.10.1016/j.envint.2018.05.013Search in Google Scholar

Liu, J., Martin, J.W., 2019. Comparison of Bisphenol A and Bisphenol S Percutaneous Absorption and Biotransformation, Environmental Health Perspectives, 127(6), 67008. https://doi.org/10.1289/EHP504410.1289/EHP5044Search in Google Scholar

Nakamura, D., et al., 2010. Bisphenol A may cause testosterone reduction by adversely affecting both testis and pituitary systems similar to estradiol, Toxicology letters, 194(1-2), 16-25.10.1016/j.toxlet.2010.02.002Search in Google Scholar

Nomiri, S., Hoshyar, R., Ambrosino, C., Tyler, C. R., Mansouri, B., 2019. A mini review of bisphenol A (BPA) effects on cancer-related cellular signaling pathways, Environmental Science and Pollution Research International, 26(9), 8459-8467. https://doi.org/10.1007/s11356-019-04228-910.1007/s11356-019-04228-9Search in Google Scholar

Pjanic, M., 2017. The role of polycarbonate monomer bisphenol-A in insulin resistance, PeerJ, 5, e3809. DOI: 10.7717/peerj.3809.10.7717/peerj.3809Search in Google Scholar

Rochester, J. R., 2013. Bisphenol A and human health: a review of the literature, Reproductive toxicology, 42, 132-155.10.1016/j.reprotox.2013.08.008Search in Google Scholar

Rochester, J.R., Bolden, A.L., 2015. Bisphenol S and F: A Systematic Review and Comparison of the Hormonal Activity of Bisphenol A Substitutes, Environmental Health Perspectives, 123(7), 643-650. https://doi.org/10.1289/ehp.140898910.1289/ehp.1408989Search in Google Scholar

Schatten, H., Ripple, M. O., 2018. The Impact of Centrosome Pathologies on Prostate Cancer Development and Progression, Advances in Experimental Medicine and Biology, 1095, 67-81. https://doi.org/10.1007/978-3-319-95693-0_410.1007/978-3-319-95693-0_4Search in Google Scholar

Shafei, A., Ramzy, M.M., Hegazy, A.I., Husseny, A.K., El-Hadary, U.G., Taha, M.M., Mosa, A.A., 2018. The molecular mechanisms of action of the endocrine disrupting chemical bisphenol A in the development of cancer, Gene, 647, 235-243. https://doi.org/10.1016/j.gene.2018.01.01610.1016/j.gene.2018.01.016Search in Google Scholar

Tang, S., et al., 2016. Gas-phase flame-retardant effects of a bi-group compound based on phosphaphenanthrene and triazine-trione groups in epoxy resin, Polymer Degradation and Stability, 133, 350-357.10.1016/j.polymdegradstab.2016.09.014Search in Google Scholar

Tarapore, P., et al., 2014. Exposure to bisphenol A correlates with early-onset prostate cancer and promotes centrosome amplification and anchorage-independent growth in vitro, PloS one, 9(3), e90332. DOI: 10.1371/journal.pone.0090332.10.1371/journal.pone.0090332Search in Google Scholar

Tse, L. A., Wang, F., Yi Lee, P.M., Ho, W.M., and Ng, C.F., 2018. 1656c Nightshift work and prostate cancer among hong kong chinese men, Occupational and Environmental Medicine, 75, A483.4-A484. https://doi.org/10.1136/oemed-2018-ICOHabstracts.137710.1136/oemed-2018-ICOHabstracts.1377Search in Google Scholar

Wang, X., et al., 2010. Flame retardancy and thermal degradation mechanism of epoxy resin composites based on a DOPO substituted organo-phosphorus oligomer, Polymer, 51(11), 2435-2445.10.1016/j.polymer.2010.03.053Search in Google Scholar

Zhu, X., Gao, L., Yan, C., and He, Y., 2018. A novel role and mechanism of cystic fibrosis transmembrane conductance regulator in bisphenol A-induced prostate cancer, Journal of Cellular Biochemistry, Advance online publication, https://doi.org/10.1002/jcb.2815610.1002/jcb.28156Search in Google Scholar