Acceso abierto

Dynamic Analysis of a Steel-Concrete Railway Bridges of Langer Type Under the Influence of a Moving Load


Cite

Sokol M., Venglár M., Lamperová K., Márföldi M.: Performance Assessment of a Renovated Precast Concrete Bridge Using Static and Dynamic Tests. Applied Sciences. Vol. 10. 2020. pp. 1–19. Search in Google Scholar

Binczyk M., Żółtowski K.: Launching of steel bridge girder. Application of nonlinear shell models. CRC Press Taylor & Francis/Balkema, 2019. Search in Google Scholar

Tomasik J., Obara P.: Dynamic stability of tensegrity structures – Part 1: The time – independent external load, Materials, 16(2), 580, 2023. Search in Google Scholar

Radoń U., Zabojszcza P., Sokol M.: The Influence of Dome Geometry on the Results of Modal and Buckling Analysis, Applied Sciences – Basel, 13, 2729, 2023. Search in Google Scholar

Lamperová K., Sokol M., Timková B.: Identification of Bearings State on the Bridge Checked by Dynamic Tests. Journal of Mechanical Engineering. Vol. 70. 2020. pp. 67–76. Search in Google Scholar

Živanović S., Pavic A., Reynolds P.: Finite element modelling and updating of a lively footbridge: The complete process. J Sound Vib 2007;301(1–2):126–45. http://dx.doi.org/10.1016/j.jsv.2006.09.024. Search in Google Scholar

Sokol M., Ároch R., Lamperová K., Marton M., García-Sanz-Caledo J.: Parametric Analysis of Rotational Effects in Seismic Design of Tall Structures. Applied Sciences. Vol 11. 2021. pp. 1–13. Search in Google Scholar

Sokol M., Márföldi M., Venglár M., Lamperová K.: Evaluation of Performance Indicator of Railway Bridges Using Updated Finite Element Model. Journal of Mechanical Engineering. 2019. Vol. 69. pp. 89–96. Search in Google Scholar

Venglár M., Sokol M.: Case study: The Harbor Bridge in Bratislava. Structural Concrete. vol. 21. 2020. pp. 2736–2748. Search in Google Scholar

Banas A., Jankowski R.: Experimental and numerical study on dynamics of two footbridges with different shapes of girders. Appl Sci 2020;10(13):4505. Search in Google Scholar

Zhang L., Huang J.Y.: Dynamic interaction analysis of the high-speed maglev vehicle/guideway system based on a field measurement and model updating method. Eng Struct 2019;180(December 2017):1–17. http://dx.doi.org/10.1016/j.engstruct.2018.11.031. Search in Google Scholar

Pradelok S., Jasiński M., Kocański T., Poprawa G.: Numerical determination of dynamic response of the structure on the example of arch bridge. Procedia Eng 2016;161:1084–9. http://dx.doi.org/10.1016/j.proeng.2016.08.852. Search in Google Scholar

Caetano E., Cunha A., Magalhães F., Moutinho C.: Studies for controlling humaninduced vibration of the pedro e inês footbridge. Portugal. Part 1: Assessment of dynamic behaviour. Eng Struct 2010;32(4):1069–81. http://dx.doi.org/10.1016/j.engstruct.2009.12.034. Search in Google Scholar

Drygala I.J., Dulinska J.M.: Full-scale experimental and numerical investigations on the modal parameters of a single-span steel-frame footbridge. Symmetry 2019;11(3):404. http://dx.doi.org/10.3390/sym11030404. Search in Google Scholar

Magalhães F., Cunha A., Caetano E., Brincker R.: Damping estimation using free decays and ambient vibration tests. Mech Syst Signal Process 2010;24(5):1274–90. http://dx.doi.org/10.1016/j.ymssp.2009.02.011. Search in Google Scholar

Pavic A., Armitage T., Reynolds P., Wright J.: Methodology for modal testing of the millennium bridge. London. Proc Inst Civ Eng – Struct Build 2002;152(2):111–21. http://dx.doi.org/10.1680/stbu.2002.152.2.111. Search in Google Scholar

Grebowski K., Rucka M., Wilde K.: Non-destructive testing of a sport tribune under synchronized crowd-induced excitation using vibration analysis. Materials 2019;12(13):2148. http://dx.doi.org/10.3390/ma12132148. Search in Google Scholar

Brincker R., Ventura C.E.: Introduction to operational modal analysis. Chichester. West Sussex: Wiley; 2015. pp. 1–360. http://dx.doi.org/10.1002/9781118535141. Search in Google Scholar

Brownjohn J.M.W., Magalhaes F., Caetano E., Cunha A.: Ambient vibration retesting and operational modal analysis of the humber bridge. Eng Struct 2010;32(8):2003–18. http://dx.doi.org/10.1016/j.engstruct.2010.02.034. Search in Google Scholar

Yang Y.B., Yau J.D., Hsu L.C.: Vibration of simple beam due to trains moving at high speed. Engineering Structures, 19, 11, 1997, 936–944. Search in Google Scholar

Szafrański M.: Vibration of the bridge under moving singular loads – theoretical formulation and numerical solution. Journal of Applied Mathematics and Computational Mechanics, 15, 1, 2016, 169–180. Search in Google Scholar

Fryba L.: A Rough assessment of railway bridges for high-speed trains. Engineering Structures, 23, 5, 2001, 548–556. Search in Google Scholar

Li J., Su M.: The resonant vibration for a simply supported girder bridge under high-speed trains. Journal of Sounds and Vibration, 224, 5, 1999, 897–915. Search in Google Scholar

Gou H., Zhou W., Yang Ch., Yi B., Pu Q.: Dynamic response of a long-span concrete-filled steel tube tie arch bridge and the riding comfort of monorial trains. Applied Sciences, 8, 4, 2018, 1–22. Search in Google Scholar

Podworna M.: Dynamic response of steel-concrete composite bridges loaded by high-speed train. Structural Engineering and Mechanics, 62, 2, 2017, 179–196. Search in Google Scholar

Zobel H., Zbiciak A., Oleszek R., Michalczyk R., Mossakowski P.: Numerical identification of the dynamic characteristics of a steel-concrete railway bridge. Roads and Bridges – Drogi i Mosty, 13, 3, 2014, 189–215, DOI: 10.7409/rabdim.014.018. Search in Google Scholar

Klasztorny M.: Analiza dynamiczna belkowych mostów zespolonych na CMK w warunkach zwiększonych prędkości pociągów (160–250) km/h. Roads and Bridges – Drogi i Mosty, 2, 3, 2003, 73–93. Search in Google Scholar

Newmark N.M.: A method of computation for structural dynamics. J Eng Mech Div 1959;85(3):67–94. Search in Google Scholar

Sprawozdanie z wykonania próbnych obciążeń dynamicznych obiektów inżynieryjnych na szlaku Szeligi – Idzikowice linii nr 4 CMK, Wiadukt w km 26,571/26,578, Warszawa, listopad 2012 r. Search in Google Scholar

Normy PN-EN 1991-2:2007 Eurokod 1: Oddziaływania na konstrukcje – Część 2: Obciążenia ruchome mostów. Search in Google Scholar

PN-82/S-10052 Obiekty mostowe. Konstrukcje stalowe. Projektowanie. Search in Google Scholar

PN-89/S-10052 Obiekty mostowe. Konstrukcje stalowe. Wymagania i badania. Search in Google Scholar

PN-EN 1992-2:2005 Eurokod 2: Projektowanie konstrukcji z betonu – Część 2: Mosty betonowe – Projektowanie i szczegółowe zasady. Search in Google Scholar

PN-EN 1993-2:2006 Eurokod 2: Projektowanie konstrukcji stalowych – Część 2: Mosty stalowe – Projektowanie i szczegółowe zasady. Search in Google Scholar

PN-EN 1994-2:2005 Eurokod 4: Projektowanie konstrukcji zespolonych stalowo-betonowych – Część 2: Reguły ogólne i reguły dla mostów. Search in Google Scholar

eISSN:
2657-6902
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Architecture and Design, Architecture, Architects, Buildings, Construction, Materials, Engineering, Introductions and Overviews, other