Acceso abierto

Inorganic Salt Hydrates as Phase Change Materials (PCM) for Thermal Energy Storage in Solar Installations


Cite

[1] Singh G.K.: Solar power generation by PV (photovoltaic) technology: A review, Energy 2013, 53, pp. 1-13.10.1016/j.energy.2013.02.057 Search in Google Scholar

[2] Cabeza L.F., Castell A., Barreneche C.D., de Gracia, A., Fernández A.: Materials used as pcm in thermal energy storage in buildings: a review, Renew. Sustain. Energy rev. 2011, 15, pp. 1675-1695. Search in Google Scholar

[3] Li T.X., Wu D.L., He F., Wang R.Z.: Experimental investigation on copper foam/hydrated salt composite phase change material for thermal energy storage, Int. J. Heat mass transf. 2017, 115, pp. 148-157. Search in Google Scholar

[4] Kenisarin M., Mahkamov K.: Salt hydrates as latent heat storage materials: thermophysical properties and costs. Sol. Energy Mater. Sol. Cells 2016, pp. 145, 255-286.10.1016/j.solmat.2015.10.029 Search in Google Scholar

[5] Zhang P., Xiao X., Ma Z.: A review of the composite phase change materials: fabrication, characterization, mathematical modeling and application to performance enhancement, Appl. Energy 2016, 165, pp. 472-510.10.1016/j.apenergy.2015.12.043 Search in Google Scholar

[6] Raj B., Van de Voorde M., Mahajan Y.: Phase change nanomaterials for thermal energy storage. In nanotechnology for energy sustainability, 2017, pp. 459-484.10.1002/9783527696109.ch20 Search in Google Scholar

[7] Wang T., Wang S., Luo R., Zhu C., Akiyama T., Zhang Z.: Microencapsulation of phase change materials with binary cores and calcium carbonate shell for thermal energy storage. Appl. Energy 2016, 171, pp.113-119.10.1016/j.apenergy.2016.03.037 Search in Google Scholar

[8] Giro-Paloma J., Martínez M., Cabeza L.F., Fernández A.I.: Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): A review. Renew. Sustain. Energy Rev. 2016, 53, pp. 1059-1075. Search in Google Scholar

[9] Choo Y.M., Wei W.: Salt hydrates as phase change materials for photovoltaics thermal management. Energy Science & Engineering, 2021, 10, pp. 1630-1645.10.1002/ese3.1007 Search in Google Scholar

[10] Hasan A., McCormack S.J., Huang M.J., Norton B.: Evaluation of phase change materials for thermal regulation enhancement of building integrated photovoltaics, Solar Energy, 2010, 84, pp. 1601-1612.10.1016/j.solener.2010.06.010 Search in Google Scholar

[11] Taqi Al.-Najjar H.M., Mahdi J.M.: Novel mathematical modeling, performance analysis, and design charts for the typical hybrid photovoltaic/phase-change material (PV/PCM) system, Applied Energy, 2022, 315, 119027.10.1016/j.apenergy.2022.119027 Search in Google Scholar

[12] Zielenkiewicz W.: Calorimetry, Inst. of Phys. Chem. of Polish Acad. of Sciences. 2005. Search in Google Scholar

[13] Shelby J.E.: Thermal analysis of Glasses. Chapter 12 in Introduction to Glass Science and Technology. The Royal Society of chemistry. 2005.10.1039/9781847551160-00237 Search in Google Scholar

[14] Pielichowiska K., Pielichowski K.: Różnicowa kalorymetria skaningowa z modulacja temperatury (MT-DSC), Laboratorium, 2007, 7-8, pp. 36-38. Search in Google Scholar

[15] Hasan A., McCormack S.J., Huang M.J., Norton B.: Characterization of phase change materials for thermal control of photovoltaics using Differential Scanning Calorimetry and Temperature History Method. Energy Conversion and Management, 2014, 81, pp. 322-329.10.1016/j.enconman.2014.02.042 Search in Google Scholar

[16] Sole A., Miro L., Barreneche C., Martorell I., Cabeza L.F.: Review of the T-history method to determine thermophysical properties of phase change materials (PCM), Renew. Sustain. Energy Rev. 2013, 26, pp. 425-436. Search in Google Scholar

[17] Domańska U.: Thermophysical properties and thermodynamic phase behavior of ionic liquids, Thermochim. Acta 2006, 448, pp. 19-30.10.1016/j.tca.2006.06.018 Search in Google Scholar

[18] Wróbel S., Marzec M.: Różnicowa kalorymetria skaningowa, Zakład Inżynierii Materiałów, s. 44. Search in Google Scholar

[19] Yinping Z., Yi J., Yi J.: A simple method, the T-history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials. Meas. Sci. Technol. 1999, 10, 201. Search in Google Scholar

[20] Yinping, Z., Yi J.: A simple method, the T-history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials; Meas Sci. Technol, 10 (3) (1999). Search in Google Scholar

[21] Hong H., Kim S.K., Kim Y.S.: Accuracy improvement of T-history method for measuring heat of fusion of various materials. Int J Refrig, 2004, 27 (4), pp. 360-366.10.1016/j.ijrefrig.2003.12.006 Search in Google Scholar

[22] Marín J.M., Zalba B., Cabeza L.F., Mehling H.: Determination of enthalpy-temperature curves of phase change materials with the temperature-history method: improvement to temperature dependent properties; Meas Sci. Technol, 2003, 14 (2), pp. 184-189.10.1088/0957-0233/14/2/305 Search in Google Scholar

[23] Xie N., Huang Z., Luo Z., Gao X., Fang Y., Zhang Z.: Inorganic salt hydrate for thermal energy storage, Appl. Sci. 2017, 7, 1317. Search in Google Scholar

[24] Rezvanpour M., Borooghani D., Torabi F., Pazoki M.: Using CaCl2·6H2O as a phase change material for thermo-regulation and enhancing photovoltaic panels’ conversion efficiency: Experimental study and TRNSYS validation. Renewable Energy, 2020, 146, pp. 1907-1921.10.1016/j.renene.2019.07.075 Search in Google Scholar

[25] Ushak S., Gutierrez A., Galleguillos H., Fernandez A.G., Cabeza L.F., Grageda M.: Thermophysical characterization of a by-product from the non-metallic industry as inorganic PCM. Solar Energy Materials and Solar Cells, 2015, 132, pp. 385-391.10.1016/j.solmat.2014.08.042 Search in Google Scholar

[26] Melcer A., Klugmann-Radziemska E., Lewandowski W.M.: Materiały zmiennofazowe. Właściwości, klasyfikacja, zalety i wady. Przem. Chem., 2012 7, pp. 1000-1011. Search in Google Scholar

[27] Zwolińska M., Bogdan A.: Związki zmiennofazowe w zastosowaniach techniczno-użytkowych i ergonomicznych. Ergonomia, 2012, 4, pp. 22-25. Search in Google Scholar

[28] Hussain S.I., Dinesh R., Roseline A.: Enhanced thermal performance and study the influence of sub cooling on activated carbon dispersed eutectic PCM for cold storage applications. Energy Build. 2017, 143, pp. 17-24. Search in Google Scholar

[29] Pielichowska K., Pielichowski K.: Phase change materials for thermal energy storage. Prog. Mater. Sci. 2014, 65, pp. 67-123. Search in Google Scholar

[30] Khan Z., Khan Z., Ghafoor A.: A review of performance enhancement of PCM based latent heat storage system within the context of materials, thermal stability and compatibility. Energy Convers. Manag. 2016, 115, pp. 132-158. Search in Google Scholar

[31] Lorente S., Bejan A., Niu J.L.: Construal design of latent thermal energy storage with vertical spiral heaters. Int. J. Heat Mass Transf. 2015, 81, pp. 283-288. Search in Google Scholar

[32] Li G., Zhang B., Li X., Zhou Y., Sun Q., Yun Q.: The preparation, characterization and modification of a new phase change material: CaCl2·6H2O–MgCl2·6H2O eutectic hydrate salt. Sol. Energy Mater. Sol. Cells 2014, 126, pp. 51-55.10.1016/j.solmat.2014.03.031 Search in Google Scholar

[33] Liu Y., Yang Y.: Preparation and thermal properties od Na2CO3 10H2O Na2HPO412H2O eutectic hydrate salt as a novel phase change material for energy storage. Applied Thermal Engineering 2006, 10, pp. 606-609.10.1016/j.applthermaleng.2016.10.146 Search in Google Scholar

[34] Xin W., Fang J. Jiang W., Ping L., Na L., Yanhan F., Wang L.: Preparation and modification of novel phase change material Na2SO4 10H2O Na2HPO4 12H2O binary eutectic hydrate salt. Energy Sources, Part A:Recovery, Utilization and Environmental Effects, 2019, pp. 1-12. Search in Google Scholar

[35] Mohamed S.A., Al-Sulaiman F.A., Ibrahim N.I., Zahir M.H., Al-Ahmed A., Saidur R., Yılbaş B.S., Sahin A.Z.: A review on current status and challenges of inorganic phase change materials for thermal energy storage systems. Renew. Sustain. Energy Rev. 2017, 70, pp. 1072-1089. Search in Google Scholar

[36] Dannemand M., Johansen J.B., Furbo S.: Solidification behavior and thermal conductivity of bulk sodium acetate trihydrate composites with thickening agents and graphite. Sol. Energy Mater. Sol. Cells 2016, 145, pp. 287-295.10.1016/j.solmat.2015.10.038 Search in Google Scholar

[37] Shin H.K., Park M., Kim H.-Y., Park S.-J.: Thermal property and latent heat energy storage behavior of sodium acetate trihydrate composites containing expanded graphite and carboxymethyl cellulose for phase change materials. Appl. Therm. Eng. 2015, 75, pp. 978-983. Search in Google Scholar

[38] Li Y., Yu S., Chen P., Rojas R., Hajian A., Berglund L.: Cellulose nanofibers enable paraffin encapsulation and the formation of stable thermal regulation nanocomposites. Nano Energy 2017, 34, pp. 541-548.10.1016/j.nanoen.2017.03.010 Search in Google Scholar

[39] Hu X. Huang Z., Yu X., Li B.: Preparation and thermal energy storage of carboxymethyl cellulose-modified nanocapsules. BioEnergy Res. 2013, 6, pp. 1135-1141. Search in Google Scholar

[40] Jin X., Medina M.A., Zhang X., Zhang S.: Phase-change characteristic analysis of partially melted sodium acetate trihydrate using DSC. Int. J. Thermophys. 2014, 35, pp. 45-52. Search in Google Scholar

[41] Gutierrez A., Ushak S., Galleguillos H., Fernandez A., Cabeza L.F., Grágeda M.: Use of polyethylene glycol for the improvement of the cycling stability of bischofite as thermal energy storage material. Appl. Energy 2015, 154, pp. 616-621.10.1016/j.apenergy.2015.05.040 Search in Google Scholar

[42] Kazemi Z., Mortazavi S.M.: A new method of application of hydrated salts on textiles to achieve thermoregulating properties, Thermochim. Acta 2014, 589, pp. 56-62.10.1016/j.tca.2014.05.015 Search in Google Scholar

[43] Duan Z.-J., Zhang H.-Z., Sun L.-X., Cao Z., Xu F., Zou Y.-J., Chu H.-L., Qiu S.-J., Xiang C.-L., Zhou H.-Y.: CaCl2·6H2O/expanded graphite composite as form-stable phase change materials for thermal energy storage, J. Therm. Anal. Calorim. 2013, 115, pp. 111-117. Search in Google Scholar

[44] Xu B., Li Z.: Paraffin/diatomite composite phase change material incorporated cement-based composite for thermal energy storage. Appl. Energy 2013, 105, pp. 229-237.10.1016/j.apenergy.2013.01.005 Search in Google Scholar

[45] Lasfargues M., Bell A., Ding Y.: In Situ production of titanium dioxide nanoparticles in molten salt phase for thermal energy storage and heat-transfer fluid applications, J. Nanopart. Res. 2016, 18, pp. 1-11. Search in Google Scholar

[46] Tiagi V., Kaushik S.C.: Development of phase change materials based microencapsulated technology for buildings: A review. Renew. Sustain. Energy Rev. 2011, 15, pp. 1373-1391. Search in Google Scholar

[47] Huang J., Wang T., Zhu P., Xiao J.: Preparation, characterization, and thermal properties of the microencapsulation of a hydrated salt as phase change energy storage materials. Thermochim. Acta 2013, 557, pp. 1-6.10.1016/j.tca.2013.01.019 Search in Google Scholar

[48] Korhammer K., Druske M.-M., Fopah-Lele A., Rammelberg H.U., Wegscheider N., Opel O., Osterland T., Ruck W.: Sorption and thermal characterization of composite materials based on chlorides for thermal energy storage, Appl. Energy 2016, 162, pp. 1462-1472.10.1016/j.apenergy.2015.08.037 Search in Google Scholar

[49] Huang Z., Luo Z., Gao X., Fang X., Fang Y., Zhang Z.: Investigations on the thermal stability, long-term reliability of LiNO3/KCl – Expanded graphite composite as industrial waste heat storage material and its corrosion properties with metals. Appl. Energy 2017, 188, pp. 521-528.10.1016/j.apenergy.2016.12.010 Search in Google Scholar

[50] Cheng F., Wen R., Huang Z., Fang M., Liu Y.G., Wu X., Min X.: Preparation and analysis of lightweight wall material with expanded graphite (EG)/paraffin composites for solar energy storage, Appl. Therm. Eng. 2017, 120, pp. 107-114. Search in Google Scholar

[51] Xu T., Li Y., Chen J., Liu J.: Preparation and thermal energy storage properties of lino 3-kcl-nano 3/expanded graphite composite phase change material, Sol. Energy Mater. Sol. Cells 2017, 169, pp. 215-221.10.1016/j.solmat.2017.05.035 Search in Google Scholar

[52] Huang X., Alva G., Liu L., Fang G.: Preparation, characterization and thermal properties of fatty acideutectics/bentonite/expanded graphite composites as novel form–stable thermal energy storage materials, Sol. Energy Mater. Sol. Cells 2017, 166, pp. 157-166.10.1016/j.solmat.2017.03.026 Search in Google Scholar

[53] Cui W., Zhang H., Xia Y., Zou Y., Xiang C., Chu H., Qiu S., Xu F., Sun L.: Preparation and thermophysical properties of a novel form-stable CaCl2·6H2O/sepiolite composite phase change material for latent heat storage, J. Therm. Anal. Calorim. 2017, 20, pp. 1-7. Search in Google Scholar

eISSN:
2657-6902
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Architecture and Design, Architecture, Architects, Buildings, Construction, Materials, Engineering, Introductions and Overviews, other