Cite

Abdulrahman, I., Jamal, M. T., Pugazhendi, A., Dhavamani, J., & Satheesh, S. (2022a). Antibiofilm activity of secondary metabolites from bacterial endophytes of Red sea soft corals. International Biodeterioration & Biodegradation, 173, 105462. https://doi.org/10.1016/j.ibiod.2022.105462 AbdulrahmanI. JamalM. T. PugazhendiA. DhavamaniJ. SatheeshS. 2022a Antibiofilm activity of secondary metabolites from bacterial endophytes of Red sea soft corals International Biodeterioration & Biodegradation 173 105462. https://doi.org/10.1016/j.ibiod.2022.105462 10.1016/j.ibiod.2022.105462 Search in Google Scholar

Abdulrahman, I., Jamal, M. T., & Satheesh, S. (2022b). The anti-settlement activity of extracts of marine bacteria associated with soft corals against barnacle larvae. Egyptian Journal of Aquatic Biology & Fisheries, 26(3), 885–900. https://doi.org/10.21608/ejabf.2022.248212 AbdulrahmanI. JamalM. T. SatheeshS. 2022b The anti-settlement activity of extracts of marine bacteria associated with soft corals against barnacle larvae Egyptian Journal of Aquatic Biology & Fisheries 26 3 885 900 https://doi.org/10.21608/ejabf.2022.248212 10.21608/ejabf.2022.248212 Search in Google Scholar

Adnan, M., Alshammari, E., Patel, M., Amir Ashraf, S., Khan, S., & Hadi, S. (2018). Significance and potential of marine microbial natural bioactive compounds against biofilms/biofouling: Necessity for green chemistry. PeerJ, 6, e5049. https://doi.org/10.7717/peerj.5049 PMID:29967730 AdnanM. AlshammariE. PatelM. Amir AshrafS. KhanS. HadiS. 2018 Significance and potential of marine microbial natural bioactive compounds against biofilms/biofouling: Necessity for green chemistry PeerJ 6 e5049 https://doi.org/10.7717/peerj.5049 PMID:29967730 10.7717/peerj.5049602646129967730 Search in Google Scholar

Aguila-Ramírez, R. N., Hernández-Guerrero, C. J., González-Acosta, B., Id-Daoud, G., Hewitt, S., Pope, J., & Hellio, C. (2014). Antifouling activity of symbiotic bacteria from sponge Aplysina gerardogreeni. International Biodeterioration & Biodegradation, 90 (May 2014), 64–70. https://doi.org/10.1016/j.ibiod.2014.02.003 Aguila-RamírezR. N. Hernández-GuerreroC. J. González-AcostaB. Id-DaoudG. HewittS. PopeJ. HellioC. 2014 Antifouling activity of symbiotic bacteria from sponge Aplysina gerardogreeni International Biodeterioration & Biodegradation 90 May 2014 64 70 https://doi.org/10.1016/j.ibiod.2014.02.003 10.1016/j.ibiod.2014.02.003 Search in Google Scholar

Alzieu, C. (1998). Tributyltin: Case study of a chronic contaminant in the coastal environment. Ocean and Coastal Management, 40(1), 23–36. https://doi.org/10.1016/S0964-5691(98)00036-2 AlzieuC. 1998 Tributyltin: Case study of a chronic contaminant in the coastal environment Ocean and Coastal Management 40 1 23 36 https://doi.org/10.1016/S0964-5691(98)00036-2 10.1016/S0964-5691(98)00036-2 Search in Google Scholar

Antunes, J., Leão, P., & Vasconcelos, V. (2019). Marine biofilms: Diversity of communities and of chemical cues. Environmental Microbiology Reports, 11(3), 287–305. https://doi.org/10.1111/1758-2229.12694 PMID:30246474 AntunesJ. LeãoP. VasconcelosV. 2019 Marine biofilms: Diversity of communities and of chemical cues Environmental Microbiology Reports 11 3 287 305 https://doi.org/10.1111/1758-2229.12694 PMID:30246474 10.1111/1758-2229.1269430246474 Search in Google Scholar

Arulazhagan, P., & Vasudevan, N. (2009). Role of a moderately halophilic bacterial consortium in the biodegradation of polyaromatic hydrocarbons. Marine Pollution Bulletin, 58(2), 256–262. https://doi.org/10.1016/j.marpolbul.2008.09.017 PMID:18995870 ArulazhaganP. VasudevanN. 2009 Role of a moderately halophilic bacterial consortium in the biodegradation of polyaromatic hydrocarbons Marine Pollution Bulletin 58 2 256 262 https://doi.org/10.1016/j.marpolbul.2008.09.017 PMID:18995870 10.1016/j.marpolbul.2008.09.01718995870 Search in Google Scholar

Ba-Akdah, M. A., & Satheesh, S. (2021). Characterization and antifouling activity analysis of extracellular polymeric substances produced by an epibiotic bacterial strain Kocuria flava associated with the green macroalga Ulva lactuca. Acta Oceanologica Sinica, 40, 107–115. Advance online publication. https://doi.org/10.1007/s13131-020-1694-x Ba-AkdahM. A. SatheeshS. 2021 Characterization and antifouling activity analysis of extracellular polymeric substances produced by an epibiotic bacterial strain Kocuria flava associated with the green macroalga Ulva lactuca Acta Oceanologica Sinica 40 107 115 Advance online publication. https://doi.org/10.1007/s13131-020-1694-x 10.1007/s13131-020-1694-x Search in Google Scholar

Balqadi, A. A., Salama, A. J., & Satheesh, S. (2018). Microfouling development on artificial substrates deployed in the central Red Sea. Oceanologia, 60(2), 219–231. https://doi.org/10.1016/j.oceano.2017.10.006 BalqadiA. A. SalamaA. J. SatheeshS. 2018 Microfouling development on artificial substrates deployed in the central Red Sea Oceanologia 60 2 219 231 https://doi.org/10.1016/j.oceano.2017.10.006 10.1016/j.oceano.2017.10.006 Search in Google Scholar

Bhushan, B. (2016). Bio- and inorganic fouling. In B. Bhushan (Ed.), Biomimetics: Bioinspired hierarchical-structured surfaces for green science and technology (pp. 423–456). Springer International Publishing., https://doi.org/10.1007/978-3-319-28284-8_12 BhushanB. 2016 Bio- and inorganic fouling In BhushanB. (Ed.), Biomimetics: Bioinspired hierarchical-structured surfaces for green science and technology 423 456 Springer International Publishing https://doi.org/10.1007/978-3-319-28284-8_12 10.1007/978-3-319-28284-8_12 Search in Google Scholar

Blockley, A., Elliott, D. R., Roberts, A. P., & Sweet, M. (2017). Symbiotic microbes from marine invertebrates: Driving a new era of natural product drug discovery. Diversity (Basel), 9(4), 49. https://doi.org/10.3390/d9040049 BlockleyA. ElliottD. R. RobertsA. P. SweetM. 2017 Symbiotic microbes from marine invertebrates: Driving a new era of natural product drug discovery Diversity (Basel) 9 4 49 https://doi.org/10.3390/d9040049 10.3390/d9040049 Search in Google Scholar

Bowman, J. P. (2007). Bioactive compound synthetic capacity and ecological significance of marine bacterial genus Pseudoalteromonas. Marine Drugs, 5(4), 220–241. https://doi.org/10.3390/md504220 PMID:18463726 BowmanJ. P. 2007 Bioactive compound synthetic capacity and ecological significance of marine bacterial genus Pseudoalteromonas Marine Drugs 5 4 220 241 https://doi.org/10.3390/md504220 PMID:18463726 10.3390/md504220236569318463726 Search in Google Scholar

Cámara, M., Green, W., MacPhee, C. E., Rakowska, P. D., Raval, R., Richardson, M. C., Slater-Jefferies, J., Steventon, K., & Webb, J. S. (2022). Economic significance of biofilms: A multidisciplinary and cross-sectoral challenge. NPJ Biofilms and Microbiomes, 8(1), 42. https://doi.org/10.1038/s41522-022-00306-y PMID:35618743 CámaraM. GreenW. MacPheeC. E. RakowskaP. D. RavalR. RichardsonM. C. Slater-JefferiesJ. SteventonK. WebbJ. S. 2022 Economic significance of biofilms: A multidisciplinary and cross-sectoral challenge NPJ Biofilms and Microbiomes 8 1 42 https://doi.org/10.1038/s41522-022-00306-y PMID:35618743 10.1038/s41522-022-00306-y913568235618743 Search in Google Scholar

Carroll, A. R., Copp, B. R., Davis, R. A., Keyzers, R. A., & Prinsep, M. R. (2021). Marine natural products. Natural Product Reports, 38(2), 362–413. https://doi.org/10.1039/D0NP00089B PMID:33570537 CarrollA. R. CoppB. R. DavisR. A. KeyzersR. A. PrinsepM. R. 2021 Marine natural products Natural Product Reports 38 2 362 413 https://doi.org/10.1039/D0NP00089B PMID:33570537 10.1039/D0NP00089B33570537 Search in Google Scholar

Chambers, L. D., Stokes, K. R., Walsh, F. C., & Wood, R. J. (2006). Modern approaches to marine antifouling coatings. Surface and Coatings Technology, 201(6), 3642–3652. https://doi.org/10.1016/j.surfcoat.2006.08.129 ChambersL. D. StokesK. R. WalshF. C. WoodR. J. 2006 Modern approaches to marine antifouling coatings Surface and Coatings Technology 201 6 3642 3652 https://doi.org/10.1016/j.surfcoat.2006.08.129 10.1016/j.surfcoat.2006.08.129 Search in Google Scholar

Chang, R.-H., Yang, L.-T., Luo, M., Fang, Y., Peng, L.-H., Wei, Y., Fang, J., Yang, J.-L., & Liang, X. (2021). Deep-sea bacteria trigger settlement and metamorphosis of the mussel Mytilus coruscus larvae. Scientific Reports, 11(1), 919. https://doi.org/10.1038/s41598-020-79832-8 PMID:33441694 ChangR.-H. YangL.-T. LuoM. FangY. PengL.-H. WeiY. FangJ. YangJ.-L. LiangX. 2021 Deep-sea bacteria trigger settlement and metamorphosis of the mussel Mytilus coruscus larvae Scientific Reports 11 1 919 https://doi.org/10.1038/s41598-020-79832-8 PMID:33441694 10.1038/s41598-020-79832-8780684233441694 Search in Google Scholar

Dhankhar, S., Dhankhar, S., & Yadav, P. (2012). Investigating antimicrobial properties of endophytic fungi associated with Salvadora oleoides decne. Anti-Infective Agents, 11(1), 48–58. https://doi.org/10.2174/22113626130106 DhankharS. DhankharS. YadavP. 2012 Investigating antimicrobial properties of endophytic fungi associated with Salvadora oleoides decne Anti-Infective Agents 11 1 48 58 https://doi.org/10.2174/22113626130106 10.2174/22113626130106 Search in Google Scholar

Dobretsov, S., & Rittschof, D. (2020). Love at first taste: Induction of larval settlement by marine microbes. International Journal of Molecular Sciences, 21(3), 731. https://doi.org/10.3390/ijms21030731 PMID:31979128 DobretsovS. RittschofD. 2020 Love at first taste: Induction of larval settlement by marine microbes International Journal of Molecular Sciences 21 3 731 https://doi.org/10.3390/ijms21030731 PMID:31979128 10.3390/ijms21030731703689631979128 Search in Google Scholar

Dobretsov, S. V., & Qian, P.-Y. (2002). Effect of bacteria associated with the green alga Ulva reticulata on marine micro- and macrofouling. Biofouling, 18(3), 217–228. https://doi.org/10.1080/08927010290013026 DobretsovS. V. QianP.-Y. 2002 Effect of bacteria associated with the green alga Ulva reticulata on marine micro- and macrofouling Biofouling 18 3 217 228 https://doi.org/10.1080/08927010290013026 10.1080/08927010290013026 Search in Google Scholar

Eduok, U., Suleiman, R., Gittens, J., Khaled, M., Smith, T. J., Akid, R., El Ali, B., & Khalil, A. (2015). Anticorrosion/antifouling properties of bacterial spore-loaded sol–gel type coating for mild steel in saline marine condition: A case of thermophilic strain of Bacillus licheniformis. RSC Advances, 5(114), 93818–93830. https://doi.org/10.1039/C5RA16494J EduokU. SuleimanR. GittensJ. KhaledM. SmithT. J. AkidR. El AliB. KhalilA. 2015 Anticorrosion/antifouling properties of bacterial spore-loaded sol–gel type coating for mild steel in saline marine condition: A case of thermophilic strain of Bacillus licheniformis RSC Advances 5 114 93818 93830 https://doi.org/10.1039/C5RA16494J 10.1039/C5RA16494J Search in Google Scholar

Egan, S., Holmström, C., & Kjelleberg, S. (2001). Pseudoalteromonas ulvae sp. nov., a bacterium with antifouling activities isolated from the surface of a marine alga. International Journal of Systematic and Evolutionary Microbiology, 51(4), 1499–1504. https://doi.org/10.1099/00207713-51-4-1499 PMID:11491351 EganS. HolmströmC. KjellebergS. 2001 Pseudoalteromonas ulvae sp. nov., a bacterium with antifouling activities isolated from the surface of a marine alga International Journal of Systematic and Evolutionary Microbiology 51 4 1499 1504 https://doi.org/10.1099/00207713-51-4-1499 PMID:11491351 10.1099/00207713-51-4-149911491351 Search in Google Scholar

Elsayed, T., Galil, D., Sedik, M., Hassan, H., & Sadik, M. (2020). Antimicrobial and anticancer activities of actinomycetes isolated from egyptian soils. International Journal of Current Microbiology and Applied Sciences, 9(9), 1689–1700. Advance online publication. https://doi.org/10.20546/ijcmas.2020.909.209 ElsayedT. GalilD. SedikM. HassanH. SadikM. 2020 Antimicrobial and anticancer activities of actinomycetes isolated from egyptian soils International Journal of Current Microbiology and Applied Sciences 9 9 1689 1700 Advance online publication. https://doi.org/10.20546/ijcmas.2020.909.209 10.20546/ijcmas.2020.909.209 Search in Google Scholar

Gomez-Banderas, J. (2022). Marine natural products: A promising source of environmentally friendly antifouling agents for the maritime industries. Frontiers in Marine Science, 9, 858757. Advance online publication. https://doi.org/10.3389/fmars.2022.858757 Gomez-BanderasJ. 2022 Marine natural products: A promising source of environmentally friendly antifouling agents for the maritime industries Frontiers in Marine Science 9 858757. Advance online publication. https://doi.org/10.3389/fmars.2022.858757 10.3389/fmars.2022.858757 Search in Google Scholar

Hadfield, M. G. (2011). Biofilms and marine invertebrate larvae: What bacteria produce that larvae use to choose settlement sites. Annual Review of Marine Science, 3, 453–470. https://doi.org/10.1146/annurev-marine-120709-142753 PMID:21329213 HadfieldM. G. 2011 Biofilms and marine invertebrate larvae: What bacteria produce that larvae use to choose settlement sites Annual Review of Marine Science 3 453 470 https://doi.org/10.1146/annurev-marine-120709-142753 PMID:21329213 10.1146/annurev-marine-120709-14275321329213 Search in Google Scholar

Harder, T., Dobretsov, S., & Qian, P. Y. (2004). Waterborne polar macromolecules act as algal antifoulants in the seaweed Ulva reticulata. Marine Ecology Progress Series, 274, 133–141. https://doi.org/10.3354/meps274133 HarderT. DobretsovS. QianP. Y. 2004 Waterborne polar macromolecules act as algal antifoulants in the seaweed Ulva reticulata Marine Ecology Progress Series 274 133 141 https://doi.org/10.3354/meps274133 10.3354/meps274133 Search in Google Scholar

Hou, X.-M., Hai, Y., Gu, Y.-C., Wang, C.-Y., & Shao, C.-L. (2019). Chemical and bioactive marine natural products of coral-derived microorganisms (2015–2017). Current Medicinal Chemistry, 26(38), 6930–6941. https://doi.org/10.2174/0929867326666190626153819 PMID:31241431 HouX.-M. HaiY. GuY.-C. WangC.-Y. ShaoC.-L. 2019 Chemical and bioactive marine natural products of coral-derived microorganisms (2015–2017) Current Medicinal Chemistry 26 38 6930 6941 https://doi.org/10.2174/0929867326666190626153819 PMID:31241431 10.2174/092986732666619062615381931241431 Search in Google Scholar

Kamat, S., Dixit, R., & Kumari, M. (2022). Endophytic microbiome in bioactive compound production and plant disease management. In A. Kumar (Ed.), Microbial biocontrol: Food security and post harvest management (Vol. 2, pp. 79–128). Springer International Publishing., https://doi.org/10.1007/978-3-030-87289-2_4 KamatS. DixitR. KumariM. 2022 Endophytic microbiome in bioactive compound production and plant disease management In KumarA. (Ed.), Microbial biocontrol: Food security and post harvest management 2 79 128 Springer International Publishing https://doi.org/10.1007/978-3-030-87289-2_4 10.1007/978-3-030-87289-2_4 Search in Google Scholar

Kamino, K. (2016). Barnacle underwater attachment. In A. M. Smith (Ed.), Biological adhesives (pp. 153–176). Springer International Publishing., https://doi.org/10.1007/978-3-319-46082-6_7 KaminoK. 2016 Barnacle underwater attachment In SmithA. M. (Ed.), Biological adhesives 153 176 Springer International Publishing https://doi.org/10.1007/978-3-319-46082-6_7 10.1007/978-3-319-46082-6_7 Search in Google Scholar

Kaspar, F., Neubauer, P., & Gimpel, M. (2019). Bioactive secondary metabolites from Bacillus subtilis: A comprehensive review. Journal of Natural Products, 82(7), 2038–2053. https://doi.org/10.1021/acs.jnatprod.9b00110 PMID:31287310 KasparF. NeubauerP. GimpelM. 2019 Bioactive secondary metabolites from Bacillus subtilis: A comprehensive review Journal of Natural Products 82 7 2038 2053 https://doi.org/10.1021/acs.jnatprod.9b00110 PMID:31287310 10.1021/acs.jnatprod.9b0011031287310 Search in Google Scholar

Krug, P. J. (2006). Defense of benthic invertebrates against surface colonization by larvae: A chemical arms race. In N. Fusetani & A. S. Clare (Eds.), Antifouling compounds (Vol. 42, pp. 1–53). Springer Berlin Heidelberg., https://doi.org/10.1007/3-540-30016-3_1 KrugP. J. 2006 Defense of benthic invertebrates against surface colonization by larvae: A chemical arms race In FusetaniN. ClareA. S. (Eds.), Antifouling compounds 42 1 53 Springer Berlin Heidelberg https://doi.org/10.1007/3-540-30016-3_1 10.1007/3-540-30016-3_116805437 Search in Google Scholar

Kumar, D., Karthik, M., & Rajakumar, R. (2018). GC-MS analysis of bioactive compounds from ethanolic leaves extract of Eichhornia crassipes (mart) solms. And their pharmacological activities. Pharma Innov J, 7(8), 459–462. KumarD. KarthikM. RajakumarR. 2018 GC-MS analysis of bioactive compounds from ethanolic leaves extract of Eichhornia crassipes (mart) solms. And their pharmacological activities Pharma Innov J 7 8 459 462 Search in Google Scholar

Letunic, I., & Bork, P. (2021). Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 49(W1), W293–W296. https://doi.org/10.1093/nar/gkab301 PMID:33885785 LetunicI. BorkP. 2021 Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation Nucleic Acids Research 49 W1 W293 W296 https://doi.org/10.1093/nar/gkab301 PMID:33885785 10.1093/nar/gkab301826515733885785 Search in Google Scholar

Ma, Y., Liu, P., Yu, S., Li, D., & Cao, S. (2009). Inhibition of common fouling organisms in mariculture by epiphytic bacteria from the surfaces of seaweeds and invertebrates. Acta Ecologica Sinica, 29(4), 222–226. https://doi.org/10.1016/j.chnaes.2009.08.004 MaY. LiuP. YuS. LiD. CaoS. 2009 Inhibition of common fouling organisms in mariculture by epiphytic bacteria from the surfaces of seaweeds and invertebrates Acta Ecologica Sinica 29 4 222 226 https://doi.org/10.1016/j.chnaes.2009.08.004 10.1016/j.chnaes.2009.08.004 Search in Google Scholar

Modolon, F., Barno, A. R., Villela, H. D. M., & Peixoto, R. S. (2020). Ecological and biotechnological importance of secondary metabolites produced by coral-associated bacteria. Journal of Applied Microbiology, 129(6), 1441–1457. https://doi.org/10.1111/jam.14766 PMID:32627318 ModolonF. BarnoA. R. VillelaH. D. M. PeixotoR. S. 2020 Ecological and biotechnological importance of secondary metabolites produced by coral-associated bacteria Journal of Applied Microbiology 129 6 1441 1457 https://doi.org/10.1111/jam.14766 PMID:32627318 10.1111/jam.1476632627318 Search in Google Scholar

Muras, A., Larroze, S., Mayer, C., Teixeira, T., Wengier, R., Benayahu, Y., & Otero, A. (2021a). Evaluation of the anti-fouling efficacy of Bacillus licheniformis extracts under environmental and natural conditions. Frontiers in Marine Science, 8, 711108. Advance online publication. https://doi.org/10.3389/fmars.2021.711108 MurasA. LarrozeS. MayerC. TeixeiraT. WengierR. BenayahuY. OteroA. 2021a Evaluation of the anti-fouling efficacy of Bacillus licheniformis extracts under environmental and natural conditions Frontiers in Marine Science 8 711108. Advance online publication. https://doi.org/10.3389/fmars.2021.711108 10.3389/fmars.2021.711108 Search in Google Scholar

Muras, A., Romero, M., Mayer, C., & Otero, A. (2021b). Biotechnological applications of Bacillus licheniformis. Critical Reviews in Biotechnology, 41(4), 609–627. https://doi.org/10.1080/07388551.2021.1873239 PMID:33593221 MurasA. RomeroM. MayerC. OteroA. 2021b Biotechnological applications of Bacillus licheniformis Critical Reviews in Biotechnology 41 4 609 627 https://doi.org/10.1080/07388551.2021.1873239 PMID:33593221 10.1080/07388551.2021.187323933593221 Search in Google Scholar

O’Toole G. A. (2011). Microtiter dish biofilm formation assay. Journal of visualized experiments : JoVE, (47), 2437. https://doi.org/10.3791/2437 O’TooleG. A. 2011 Microtiter dish biofilm formation assay Journal of visualized experiments : JoVE 47 2437 https://doi.org/10.3791/2437 10.3791/2437318266321307833 Search in Google Scholar

Ortega-Morales, B. O., Chan-Bacab, M. J., Miranda-Tello, E., Fardeau, M.-L., Carrero, J. C., & Stein, T. (2008). Antifouling activity of sessile bacilli derived from marine surfaces. Journal of Industrial Microbiology & Biotechnology, 35, 9–15. https://doi.org/10.1007/s10295-007-0260-2 PMID:17909869 Ortega-MoralesB. O. Chan-BacabM. J. Miranda-TelloE. FardeauM.-L. CarreroJ. C. SteinT. 2008 Antifouling activity of sessile bacilli derived from marine surfaces Journal of Industrial Microbiology & Biotechnology 35 9 15 https://doi.org/10.1007/s10295-007-0260-2 PMID:17909869 10.1007/s10295-007-0260-217909869 Search in Google Scholar

Peng, L.-H., Liang, X., Xu, J.-K., Dobretsov, S., & Yang, J.-L. (2020). Monospecific biofilms of Pseudoalteromonas promote larval settlement and metamorphosis of Mytilus coruscus. Scientific Reports, 10, 2577. https://doi.org/10.1038/s41598-020-59506-1 PMID:32054934 PengL.-H. LiangX. XuJ.-K. DobretsovS. YangJ.-L. 2020 Monospecific biofilms of Pseudoalteromonas promote larval settlement and metamorphosis of Mytilus coruscus Scientific Reports 10 2577 https://doi.org/10.1038/s41598-020-59506-1 PMID:32054934 10.1038/s41598-020-59506-1701875732054934 Search in Google Scholar

Pham, T. M., Wiese, J., Wenzel-Storjohann, A., & Imhoff, J. F. (2016). Diversity and antimicrobial potential of bacterial isolates associated with the soft coral Alcyonium digitatum from the Baltic Sea. Antonie van Leeuwenhoek, 109(1), 105–119. https://doi.org/10.1007/s10482-015-0613-1 PMID:26558794 PhamT. M. WieseJ. Wenzel-StorjohannA. ImhoffJ. F. 2016 Diversity and antimicrobial potential of bacterial isolates associated with the soft coral Alcyonium digitatum from the Baltic Sea Antonie van Leeuwenhoek 109 1 105 119 https://doi.org/10.1007/s10482-015-0613-1 PMID:26558794 10.1007/s10482-015-0613-126558794 Search in Google Scholar

Qian, P.-Y., Xu, Y., & Fusetani, N. (2010). Natural products as antifouling compounds: Recent progress and future perspectives. Biofouling, 26(2), 223–234. https://doi.org/10.1080/08927010903470815 PMID:19960389 QianP.-Y. XuY. FusetaniN. 2010 Natural products as antifouling compounds: Recent progress and future perspectives Biofouling 26 2 223 234 https://doi.org/10.1080/08927010903470815 PMID:19960389 10.1080/0892701090347081519960389 Search in Google Scholar

Rajan, B. M., & Kannabiran, K. (2014). Extraction and identification of antibacterial secondary metabolites from marine Streptomyces sp. Vitbrk2. International Journal of Molecular and Cellular Medicine, 3(3), 130–137. PMID:25317399 RajanB. M. KannabiranK. 2014 Extraction and identification of antibacterial secondary metabolites from marine Streptomyces sp. Vitbrk2 International Journal of Molecular and Cellular Medicine 3 3 130 137 PMID:25317399 Search in Google Scholar

Salama, A. J., Satheesh, S., & Balqadi, A. A. (2018). Antifouling activities of methanolic extracts of three macroalgal species from the Red Sea. Journal of Applied Phycology, 30, 1943–1953. https://doi.org/10.1007/s10811-017-1345-6 SalamaA. J. SatheeshS. BalqadiA. A. 2018 Antifouling activities of methanolic extracts of three macroalgal species from the Red Sea Journal of Applied Phycology 30 1943 1953 https://doi.org/10.1007/s10811-017-1345-6 10.1007/s10811-017-1345-6 Search in Google Scholar

Satheesh, S., Ba-Akdah, M. A., & Al-Sofyani, A. A. (2016). Natural antifouling compound production by microbes associated with marine macroorganisms: A review. Electronic Journal of Biotechnology, 21, 26–35. https://doi.org/10.1016/j.ejbt.2016.02.002 SatheeshS. Ba-AkdahM. A. Al-SofyaniA. A. 2016 Natural antifouling compound production by microbes associated with marine macroorganisms: A review Electronic Journal of Biotechnology 21 26 35 https://doi.org/10.1016/j.ejbt.2016.02.002 10.1016/j.ejbt.2016.02.002 Search in Google Scholar

Satheesh, S., Soniamby, A. R., Sunjaiy Shankar, C. V., & Mary Josephine Punitha, S. (2012). Antifouling activities of marine bacteria associated with sponge (Sigmadocia sp.). Journal of Ocean University of China, 11, 354–360. https://doi.org/10.1007/s11802-012-1927-5 SatheeshS. SoniambyA. R. Sunjaiy ShankarC. V. Mary Josephine PunithaS. 2012 Antifouling activities of marine bacteria associated with sponge (Sigmadocia sp.) Journal of Ocean University of China 11 354 360 https://doi.org/10.1007/s11802-012-1927-5 10.1007/s11802-012-1927-5 Search in Google Scholar

Siddik, A., & Satheesh, S. (2019). Characterization and assessment of barnacle larval settlement-inducing activity of extracellular polymeric substances isolated from marine biofilm bacteria. Scientific Reports, 9(1), 17849. https://doi.org/10.1038/s41598-019-54294-9 PMID:31780773 SiddikA. SatheeshS. 2019 Characterization and assessment of barnacle larval settlement-inducing activity of extracellular polymeric substances isolated from marine biofilm bacteria Scientific Reports 9 1 17849 https://doi.org/10.1038/s41598-019-54294-9 PMID:31780773 10.1038/s41598-019-54294-9688279731780773 Search in Google Scholar

Srinivasan, R., Kannappan, A., Shi, C., & Lin, X. (2021). Marine bacterial secondary metabolites: A treasure house for structurally unique and effective antimicrobial compounds. Marine Drugs, 19(10), 530. https://doi.org/10.3390/md19100530 PMID:34677431 SrinivasanR. KannappanA. ShiC. LinX. 2021 Marine bacterial secondary metabolites: A treasure house for structurally unique and effective antimicrobial compounds Marine Drugs 19 10 530 https://doi.org/10.3390/md19100530 PMID:34677431 10.3390/md19100530853946434677431 Search in Google Scholar

Steinberg, P. D., & De Nys, R. (2002). Chemical mediation of colonization of seaweed surfaces. Journal of Phycology, 38(4), 621–629. https://doi.org/10.1046/j.1529-8817.2002.02042.x SteinbergP. D. De NysR. 2002 Chemical mediation of colonization of seaweed surfaces Journal of Phycology 38 4 621 629 https://doi.org/10.1046/j.1529-8817.2002.02042.x 10.1046/j.1529-8817.2002.02042.x Search in Google Scholar

Subba Rao, D. V. (2005). Comprehensive review of the records of the biota of the indian seas and introduction of non-indigenous species. Aquatic Conservation, 15(2), 117–146. https://doi.org/10.1002/aqc.659 Subba RaoD. V. 2005 Comprehensive review of the records of the biota of the indian seas and introduction of non-indigenous species Aquatic Conservation 15 2 117 146 https://doi.org/10.1002/aqc.659 10.1002/aqc.659 Search in Google Scholar

Sultan, M. H., Zuwaiel, A. A., Moni, S. S., Alshahrani, S., Alqahtani, S. S., Madkhali, O., & Elmobark, M. E. (2020). Bioactive principles and potentiality of hot methanolic extract of the leaves from Artemisia absinthium in vitro cytotoxicity against human mcf-7 breast cancer cells, antibacterial study and wound healing activity. Current Pharmaceutical Biotechnology, 21(15), 1711–1721. https://doi.org/10.2174/1389201021666200928150519 PMID:32988347 SultanM. H. ZuwaielA. A. MoniS. S. AlshahraniS. AlqahtaniS. S. MadkhaliO. ElmobarkM. E. 2020 Bioactive principles and potentiality of hot methanolic extract of the leaves from Artemisia absinthium in vitro cytotoxicity against human mcf-7 breast cancer cells, antibacterial study and wound healing activity Current Pharmaceutical Biotechnology 21 15 1711 1721 https://doi.org/10.2174/1389201021666200928150519 PMID:32988347 10.2174/138920102166620092815051932988347 Search in Google Scholar

Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38(7), 3022–3027. https://doi.org/10.1093/molbev/msab120 PMID:33892491 TamuraK. StecherG. KumarS. 2021 MEGA11: Molecular Evolutionary Genetics Analysis Version 11 Molecular Biology and Evolution 38 7 3022 3027 https://doi.org/10.1093/molbev/msab120 PMID:33892491 10.1093/molbev/msab120823349633892491 Search in Google Scholar

Togashi, N., Shiraishi, A., Nishizaka, M., Matsuoka, K., Endo, K., Hamashima, H., & Inoue, Y. (2007). Antibacterial activity of long-chain fatty alcohols against Staphylococcus aureus. Molecules (Basel, Switzerland), 12(2), 139–148. https://doi.org/10.3390/12020139 PMID:17846563 TogashiN. ShiraishiA. NishizakaM. MatsuokaK. EndoK. HamashimaH. InoueY. 2007 Antibacterial activity of long-chain fatty alcohols against Staphylococcus aureus Molecules (Basel, Switzerland) 12 2 139 148 https://doi.org/10.3390/12020139 PMID:17846563 10.3390/12020139614939817846563 Search in Google Scholar

van de Water, J. A. J. M., Allemand, D., & Ferrier-Pagès, C. (2018). Host-microbe interactions in octocoral holobionts - recent advances and perspectives. Microbiome, 6(1), 64. https://doi.org/10.1186/s40168-018-0431-6 PMID:29609655 van de WaterJ. A. J. M. AllemandD. Ferrier-PagèsC. 2018 Host-microbe interactions in octocoral holobionts - recent advances and perspectives Microbiome 6 1 64 https://doi.org/10.1186/s40168-018-0431-6 PMID:29609655 10.1186/s40168-018-0431-6588002129609655 Search in Google Scholar

Venkatramanan, M., Sankar Ganesh, P., Senthil, R., Akshay, J., Veera Ravi, A., Langeswaran, K., Vadivelu, J., Nagarajan, S., Rajendran, K., & Shankar, E. M. (2020). Inhibition of quorum sensing and biofilm formation in Chromobacterium violaceum by fruit extracts of Passiflora edulis. ACS Omega, 5(40), 25605–25616. https://doi.org/10.1021/acsomega.0c02483 PMID:33073086 VenkatramananM. Sankar GaneshP. SenthilR. AkshayJ. Veera RaviA. LangeswaranK. VadiveluJ. NagarajanS. RajendranK. ShankarE. M. 2020 Inhibition of quorum sensing and biofilm formation in Chromobacterium violaceum by fruit extracts of Passiflora edulis ACS Omega 5 40 25605 25616 https://doi.org/10.1021/acsomega.0c02483 PMID:33073086 10.1021/acsomega.0c02483755725433073086 Search in Google Scholar

Viju, N., Anitha, A., Vini, S., Shankar, C. V., Sathianeson, S., & Punitha, M. (2014). Antibiofilm activities of extracellular polymeric substances produced by bacterial symbionts of seaweeds. Indian Journal of Geo-Marine Sciences, 43(11), 2136–2146. VijuN. AnithaA. ViniS. ShankarC. V. SathianesonS. PunithaM. 2014 Antibiofilm activities of extracellular polymeric substances produced by bacterial symbionts of seaweeds Indian Journal of Geo-Marine Sciences 43 11 2136 2146 Search in Google Scholar

Vinagre, P. A., Simas, T., Cruz, E., Pinori, E., & Svenson, J. (2020). Marine biofouling: A european database for the marine renewable energy sector. Journal of Marine Science and Engineering, 8(7), 495. https://doi.org/10.3390/jmse8070495 VinagreP. A. SimasT. CruzE. PinoriE. SvensonJ. 2020 Marine biofouling: A european database for the marine renewable energy sector Journal of Marine Science and Engineering 8 7 495 https://doi.org/10.3390/jmse8070495 10.3390/jmse8070495 Search in Google Scholar

Wahl, M., Al Sofyani, A., Saha, M., Kruse, I., Lenz, M., & Sawall, Y. (2014). Large scale patterns of antimicrofouling defenses in the hard coral Pocillopora verrucosa in an environmental gradient along the Saudi Arabian coast of the Red Sea. PLoS One, 9(12), e106573. Advance online publication. https://doi.org/10.1371/journal.pone.0106573 PMID:25485603 WahlM. Al SofyaniA. SahaM. KruseI. LenzM. SawallY. 2014 Large scale patterns of antimicrofouling defenses in the hard coral Pocillopora verrucosa in an environmental gradient along the Saudi Arabian coast of the Red Sea PLoS One 9 12 e106573 Advance online publication. https://doi.org/10.1371/journal.pone.0106573 PMID:25485603 10.1371/journal.pone.0106573425930125485603 Search in Google Scholar

Wang, K.-L., Wu, Z.-H., Wang, Y., Wang, C.-Y., & Xu, Y. (2017). Mini-review: Antifouling natural products from marine microorganisms and their synthetic analogs. Marine Drugs, 15(9), 266. https://doi.org/10.3390/md15090266 PMID:28846626 WangK.-L. WuZ.-H. WangY. WangC.-Y. XuY. 2017 Mini-review: Antifouling natural products from marine microorganisms and their synthetic analogs Marine Drugs 15 9 266 https://doi.org/10.3390/md15090266 PMID:28846626 10.3390/md15090266561840528846626 Search in Google Scholar

Wang, K.-L., Dou, Z.-R., Gong, G.-F., Li, H.-F., Jiang, B., & Xu, Y. (2022). Anti-larval and anti-algal natural products from marine microorganisms as sources of anti-biofilm agents. Marine Drugs, 20(2), 90. https://doi.org/10.3390/md20020090 PMID:35200620 WangK.-L. DouZ.-R. GongG.-F. LiH.-F. JiangB. XuY. 2022 Anti-larval and anti-algal natural products from marine microorganisms as sources of anti-biofilm agents Marine Drugs 20 2 90 https://doi.org/10.3390/md20020090 PMID:35200620 10.3390/md20020090887606135200620 Search in Google Scholar

Yebra, D. M., Kiil, S., & Dam-Johansen, K. (2004). Antifouling technology—Past, present and future steps towards efficient and environmentally friendly antifouling coatings. Progress in Organic Coatings, 50(2), 75–104. https://doi.org/10.1016/j.porgcoat.2003.06.001 YebraD. M. KiilS. Dam-JohansenK. 2004 Antifouling technology—Past, present and future steps towards efficient and environmentally friendly antifouling coatings Progress in Organic Coatings 50 2 75 104 https://doi.org/10.1016/j.porgcoat.2003.06.001 10.1016/j.porgcoat.2003.06.001 Search in Google Scholar

eISSN:
1897-3191
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Chemistry, other, Geosciences, Life Sciences