Acceso abierto

Diversity of Nicotiana species

 y   
12 mar 2024

Cite
Descargar portada

Augsten M., Burkowski Meyer P., Freitas L.B., Batista J.A.N., Stehmann J.R., 2022. Nicotiana gandarela (Solanaceae), a new species of ‘tobacco’ highly endangered from the Quadrilátero Ferrífero in Brazil. PhytoKeys, 190: 113-129. Search in Google Scholar

Bai D.P., Reeleder R., Brandle J.E., 1996. Production and characterization of tobacco addition lines carrying N. debneyi chromosomes with a gene for resistance to black root rot. Crop Science, 36: 852-857, doi: 10.2135/CROPSCI1996.00 11183X003600040005X. Search in Google Scholar

Bakaher N., 2020. Genetic markers in tobacco, usage for map development, diversity studies, and quantitative trait loci analysis. pp. 43-49. In: The Tobacco Plant Genome. Compendium of Plant Genomes; eds: Ivanov, N.V., Sierro, N., Peitsch, M.C.; Springer, Cham. https://doi.org/10.1007/978-3-030-29493-9_3. Search in Google Scholar

Bally J., Marks C.E., Jung H., Jia F., Roden S., Cooper T., Newbigin E., Waterhouse P.M., 2021. Nicotiana paul-ineana, a new Australian species in Nicotiana section Suaveolentes. Australian Systematic, 34: 477-484, https://doi.org/10.1071/SB20025. Search in Google Scholar

Berbeć A., Doroszewska T., 2020. The use of Nicotiana species in tobacco improvement. pp. 101-146. In: The Tobacco Plant Genome. Compendium of Plant Genomes; eds: Ivanov N.V., Sierro N., Peitsch M.C.; Springer, Cham. https://doi.org/10.1007/978-3-030-29493-9_8. Search in Google Scholar

Berbeć A., Madej A., 2012. Obecna sytuacja i perspektywy uprawy tytoniu w Polsce na tle świata i Unii Europejskiej. Studia i Raporty IUNG-PIB, 31(5): 51-67, doi: 10.26114/sir. iung.2012.31.04. Search in Google Scholar

Berbeć A., Trojak-Goluch A., 2001. Response to black root rot Thielaviopsis tabacina Ferr. of several flue-cured tobacco Nicotiana tabacum L. genotypes in different testing environments. Plant Breeding and Seed Science, 45: 11-20. Search in Google Scholar

Bindler G., Plieske J., Bakaher N., Gunduz I., Ivanov N., Van der Hoeven R., Ganal M., Donini P., 2011. A high density genetic map of tobacco (Nicotiana tabacum L.) obtained from large scale microsatellite marker development. Theoretical and Applied Genetics, 123: 219-230, doi: 10.1007/s00122-011-1578-8. Search in Google Scholar

Bindler G., Van der Hoeven R., Gunduz I., Pliske J., Ganal M., Rossi L., Gadani F., Donini P., 2007. A microsatellite marker based linkage map of tobacco. Theoretical and Applied Genetics, 114: 341-349, doi: 10.1007/s00122-006-0437-5. Search in Google Scholar

Bland M.M., Matzinger D.F., Levings C.S., 1985. Comparison of the mitochondrial genome of Nicotiana tabacum with its progenitor species. Theoretical and Applied Genetics, 69: 535-541, doi: 10.1007/BF00251100. Search in Google Scholar

Bombarely A., Rosli H.G., Vrebalov J., Moffett P., Mueller L., Martin G., 2012. A draft genome sequence of Nicotiana benthamiana to enhance molecular plant-microbe biology research. Molecular Plant-Microbe Interactions, 25: 1523-1530, https://doi.org/10.1094/MPMI-06-12-0148-TA. Search in Google Scholar

Brandle J.E., Rogers W.D., Ankersmit J.C.D., 1997. AC Gayed flue-cured tobacco. Canadian Journal of Plant Science, 77: 157-158, https://doi.org/10.4141/P96-067. Search in Google Scholar

Brokmöller T., Ling Z., Li D., Gaquerel E., Baldwin I.I., Xu S., 2017. Nicotiana attenuata Data Hub (NaDH): an integrative platform for exploring genomic, transcriptomic and metabolomic data in wild tobacco. BMC Genomics, 18:79, doi: 10.1186/s12864-016-3465-9. Search in Google Scholar

Burbidge N.T., 1960. The Australian species of Nicotiana L. (Solanaceae). Australian Journal of Botany, 8: 342-380, https://doi.org/10.1071/BT9600342. Search in Google Scholar

Cauz-Santos L.A., Dodsworth S., Samuel R., Christenhusz M.J.M., Patel D., Shittu T., Jakob A., Paun O., Chase M.W., 2022. Genomic insights into species divergence in Nicotiana benthamiana and natural variation in Rdr1 gene controlling viral susceptibility. The Plant Journal, 111: 7-18, https://doi.org/10.1111/tpj.15801. Search in Google Scholar

Chase M.W., Cauz-Santos L.A., Dodsworth S., Christen-husz M.J.M., 2022. Taxonomy of the Australian Nicotiana benthamiana complex (Nicotiana section Suaveolentes; Solanaceae): five species, four newly described, with distinct ranges and morphologies. Australian Systematic Botany, 35(5): 345-363, https://doi.org/10.1071/SB22009. Search in Google Scholar

Chase M.W., Christenhusz M.J.M., 2018a. 883. NICOTIANA KARIJINI. Curtis’s Botanical Magazine, 35: 228-236, https://doi.org/10.1111/curt.12242. Search in Google Scholar

Chase M.W., Christenhusz M.J.M., 2018b. 885. NICOTIANA GASCOYNICA. Curtis’s Botanical Magazine, 35: 245-252, https://doi.org/10.1111/curt.12244. Search in Google Scholar

Chase M.W., Christenhusz M.J.M., 2018c. 890. NICOTIANA BENTHAMIANA. Solanaceae. Curtis’s Botanical Magazine, 35(3): 286-294, https://doi.org/10.1111/curt.12249. Search in Google Scholar

Chase M.W., Christenhusz M.J.M., 2021a. 998. NICOTIANA PILA. Solanaceae. Curtis’s Botanical Magazine, 38(3): 394-404, https://doi.org/10.1111/curt.12406. Search in Google Scholar

Chase M.W., Christenhusz M.J.M., 2021b. 994. NICOTIANA INSECTICIDA. Solanaceae. Curtis’s Botanical Magazine, 38 (3): 350-364, https://doi.org/10.1111/curt.12402. Search in Google Scholar

Chase M.W., Christenhusz M.J.M., Conran J.G., Dodsworth S., Medeiros Nollet, de Assis F., Felix L.P., Fay M.F., 2018a. Unexpected diversity of Australian tobacco species (Nicotiana section Suaveolentes, Solanaceae). Curtis’s Botanical Magazine, 35: 212-227, https://doi.org/10.1111/curt.12241. Search in Google Scholar

Chase M.W., Conran J.G., Christenhusz M.J.M., 2018b. 884. NICOTIANA YANDINGA. Curtis’s Botanical Magazine, 35: 237-244, https://doi.org/10.1111/curt.12243. Search in Google Scholar

Chase M.W., Conran J.G., Christenhusz M.J.M., 2018c. 886. NICOTIANA FAUCICOLA. Curtis’s Botanical Magazine, 35: 253-260, https://doi.org/10.1111/curt.12245. Search in Google Scholar

Chase M.W., Dodsworth S., Christenhusz M.J.M., 2021a. 989. NICOTIANA WALPA. Solanaceae. Curtis’s Botanical Magazine, 38 (3): 298-308, https://doi.org/10.1111/curt.12396. Search in Google Scholar

Chase M.W., Fay M.F., Christenhusz M.J.M., 2021b. 1000. NICOTIANA SALINA. Suaveolens. Curtis’s Botanical Magazine, 38 (3): 416-424, https://doi.org/10.1111/curt.12408. Search in Google Scholar

Chase M.W., Fay M.F., Nollet F., Christenhusz M.J.M., 2021c. 993. NICOTIANA NOTHA. Curtis’s Botanical Magazine, 38(3): 340-349, https://doi.org/10.1111/curt.12401. Search in Google Scholar

Chase M.W., Knapp S., Cauz-Santos L.A., Christenhusz M.J.M., 2021d. (2845) Proposal to conserve the name Nicotiana benthamiana (N. suaveolens var. cordifolia) (Solanaceae) with a conserved type. Taxon, 70(5): 1146-1147, https://doi.org/10.1002/tax.12587. Search in Google Scholar

Chase M.W., Knapp S., Cox A.V., Clarkson J.J., Butsko Y., Joseph J., Savolainen V., Parokonny A.S., 2003. Molecular systematics, GISH and the origin of hybrid taxa in Nicotiana (Solanaceae). Annals of Botany, 92: 107-127, doi: 10.1093/aob/mcg087. Search in Google Scholar

Chase M.W., Palsson R.L., Christenhusz M.J.M., 2021e. 995. NICOTIANA HOSKINGII. Curtis’s Botanical Magazine, 38(3): 365-373, https://doi.org/10.1111/curt.12403. Search in Google Scholar

Chase M.W., Przeslawski R.A., Falvey L.E., Fay M.F., Chris-tenhusz M.J.M. 2021f. 997. NICOTIANA MURCHISONICA. Curtis’s Botanical Magazine, 38 (3): 383-393, https://doi.org/10.1111/curt.12405. Search in Google Scholar

Cheng L., Chen X., Jiang C., Ma B., Ren M., Cheng Y, Liu D., Geng R., Yang A., 2019. High-density SNP genetic linkage map construction and quantitative trait locus mapping for resistance to cucumber mosaic virus in tobacco (Nicotiana tabacum L.). The Crop Journal, 7: 539-547, https://doi.org/10.1016/j.cj.2018.11.010. Search in Google Scholar

Clarkson J.R., Symon D.E., 1991. Nicotiana wuttkei (Solanaceae), a new species from north-eastern Queensland with an unusual chromosome number. Austrobaileya, 3(3): 389-392. Search in Google Scholar

Clarkson J.J., Dodsworth S., Chase M.W., 2017. Time calibrated phylogenetic trees establish a lag between polyploidisation and diversification in Nicotiana (Solanaceae). Plant Systematics and Evolution, 303: 1001-1012. Search in Google Scholar

Clarkson J.J., Knapp S., Garcia V.F., Olmstead R.G., Leitch A.R., Chase M.W., 2004. Phylogenetic relationships in Nicotiana (Solanaceae) inferred from multiple plastid DNA regions. Molecular Phylogenetics and Evolution, 33: 75-90, doi: 10.1016/j.ympev.2004.05.002. Search in Google Scholar

Clayton E.E., 1947. A wildfire resistant tobacco. Journal of Heredity, 38: 35-40, https://doi.org/10.1093/oxfordjournals.jhered.a105684. Search in Google Scholar

Clayton E.E., 1969. The study of resistance to the black root rot disease of tobacco. Tob. Sci., 13: 30-37. Search in Google Scholar

Czubacka A., 2022. The use of the Polish germplasm collection of Nicotiana tabacum in research and tobacco breeding for disease resistance. Agriculture, 12(12), 1994, https://doi.org/10.3390/agriculture12121994. Search in Google Scholar

Depta A., Kawka M., Kursa K., Doroszewska T., 2012. Nowoczesne metody i techniki w ulepszaniu genotypów tytoniu dla produkcji rolniczej i poprawy jakości surowca. Studia i Raporty IUNG-PIB, 31(5): 69-131, doi: 10.26114/sir. iung.2012.31.05. Search in Google Scholar

Dewey R.E., Xie J., 2013. Molecular genetics of alkaloid biosyn-thesis in Nicotiana tabacum. Phytochemistry, 94: 10-27, doi: 10.1016/j.phytochem.2013.06.002. Search in Google Scholar

Doroszewska T., 2007. Uzyskanie stabilnych linii hodowlanych tytoniu z czynnikami odporności na różne izolaty wirusa Y ziemniaka (PVY) od dzikiego gatunku Nicotiana africana Merxm. Biuletyn IHAR, 244: 273-287. Search in Google Scholar

Doroszewska T., 2010. Transfer of tolerance to different Potato virus Y (PVY) isolates from Nicotiana africana Merxm. to Nicotiana tabacum L. Plant Breeding, 129(1): 76-81, https://doi.org/10.1111/j.1439-0523.2009.01634.x. Search in Google Scholar

Doroszewska T., Depta A., 2011. Resistance of wild Nicotiana species to different PVY isolates. Phytopathologia, 59: 9-24. Search in Google Scholar

Doroszewska T., Depta A., Czubacka A., 2009. Album gatunków z rodzaju Nicotiana / Album of Nicotiana species. Institute of Soil Science and Plant Cultivation. National Research Institute, Puławy. Search in Google Scholar

Drake-Stowe K., Bakaher N., Goepfert S. et al., 2017. Multiple disease resistance loci affect soilborne disease resistance in tobacco (Nicotiana tabacum). Phytopathology, 107(9): 1055-1061, https://doi.org/10.1094/PHYTO-03-17-0118-R. Search in Google Scholar

Edwards K.D., Fernandez-Pozo N., Drake-Stowe K., Humphry M., Evans A.D., Bombarely A., Allen F., Hurst R., White B., Kernodle S.P., Bromley J.R., Sanchez-Tamburrino J. P., Lewis R.S., Mueller L.A., 2017. A reference genome for Nicotiana tabacum enables map-based cloning of homeologous loci implicated in nitrogen utilization efficiency. BMC Genomics, 18:448. Search in Google Scholar

Eich E., 2008. Solanaceae and Convolvulaceae: secondary metabolites: biosynthesis, chemotaxonomy, biological and economic significance (a handbook). Springer. Search in Google Scholar

Gajos Z., 1987. Polalta, the first Polish tobacco variety resistant to Tomato spotted wilt virus was released for regional experimentation and propagation. Wiadomości Tytoniowe, 31: 11-17. Search in Google Scholar

Gajos Z., 1993. Virginia ZG-4 (Wiktoria) – A new tobacco variety resistant to Tomato spotted wilt virus (TSWV) and black root rot (Thielaviopsis basicola Ferr.). Biuletyn Centralnego Laboratorium Przemysłu Tytoniowego, 1–4: 5–19. Search in Google Scholar

Gebhardt C., 2016. The historical role of species from the Solanaceae plant family in genetic research. Theoretical and Applied Genetics, 129: 2281-2294, doi: 10.1007/s00122-016-2804-1. Search in Google Scholar

Głażewska Z., 1977. Odporność dzikich gatunków Nicotiana oraz odmian N. tabacum i N. rustica na nekrotyczne szczepy wirusa Y. Mat. XVII Sesji Nauk., IOR Poznań, pp. 277-287. Search in Google Scholar

Goodspeed T.H., 1954. The genus Nicotiana: origins, relationships and evolution of its species in the light of their distribution, morphology and cytogenetics. Chronica Botanica, pp. 161-536. Search in Google Scholar

Hecht S., 2003. Tobacco carcinogens, their biomarkers and tobacco-induced cancer. Nature Reviews Cancer, 3: 733-744, doi: 10.1038/nrc1190. Search in Google Scholar

Hoffbeck I.J., Neas M.O., Heggestad H.E., Skoog H.A., 1965. Burley 49, a new disease resistant burley tobacco. Bulletin, University of Tennessee Agricultural Experiment Station, 395. Search in Google Scholar

Holmes F.O., 1938. Inheritance of resistance to tobacco mosaic disease in tobacco. Phytopathology, 28: 553-561. Search in Google Scholar

Julio E., Denoyes-Rothan B., Verrier J.L., Dorlhac Borne F., 2006. Detection of QTLs linked to leaf and smoke properties in Nicotiana tabacum based on a study of 114 recombinant inbred lines. Molecular Breeding, 18: 69-91. Search in Google Scholar

Kelly L.J., Leitch A.R., Clarkson J.J., Knapp S., Chase M.W., 2012. Reconstructing the complex evolutionary origin of wild allopolyploid tobaccos (Nicotiana section Suaveolentes). Evolution, 67-1: 80-94. Search in Google Scholar

Kenton A., Parokonny A.S., Gleba Y.Y., Bennett M.D., 1993. Characterization of the Nicotiana tabacum L. genome by molecular cytogenetics. Molecular and General Genetics, 240: 159-169, doi: 10.1007/BF00277053. Search in Google Scholar

Khafizova G., Dobrynin P., Polev D., Matveeva T., 2018. Nicotiana glauca whole-genome investigation for cTDNA study. BMC Research Notes, 11:18. Search in Google Scholar

Knapp S., 2020. Biodiversity of Nicotiana (Solanaceae). pp. 21-41. In: The Tobacco Plant Genome, Compendium of Plant Genomes; eds: Ivanov N.V. et al. Search in Google Scholar

Knapp S., Chase M.W., Clarkson J.J., 2004. Nomenclatural changes and a new sectional classification in Nicotiana (Solanaceae). Taxon, 53(1): 73-82, doi: 10.2307/4135490. Search in Google Scholar

Kostoff D., 1943. The cytogenetics of Nicotiana. State Printing House, Sofia. Search in Google Scholar

Laskowska D., Berbeć A., 2010. TSWV resistance in DH lines of tobacco (Nicotiana tabacum L.) obtained from a hybrid between ‘Polalta’ and ‘Wiślica’. Plant Breeding, 129: 731-733, https://doi.org/10.1111/j.1439-0523.2009.01747.x. Search in Google Scholar

Lewis R.L., 2021. Long-term public maintenance of Nicotiana germplasm. Nicotiana Germplasm Collection Task Force. Final Report. CORESTA, November. Search in Google Scholar

Lewis R.S., 2005. Transfer of resistance to potato virus Y (PVY) from Nicotiana africana to Nicotiana tabacum: possible influence of tissue culture on the rate of introgression. Theoretical and Applied Genetics, 110: 678-687, doi: 10.1007/s00122-004-1893-4. Search in Google Scholar

Lewis R.S., 2007. Evaluation of Nicotiana tabacum genotypes possessing Nicotiana africana-derived genetic tolerance to Potato Virus Y. Crop Science, 47: 1975-1984, https://doi.org/10.2135/cropsci2007.01.0001. Search in Google Scholar

Lewis R.S., Bowen S.W., Keogh M.R., Dewey R.E., 2010. Three nicotine demethylase genes mediate nornicotine accumulation in tobacco: functional characterization of the CYP82E10 gene. Phytochemistry, 71: 1988-1998, doi: 10.1016/j.phytochem.2010.09.011. Search in Google Scholar

Lim K. Y., Matyasek R., Kovarik A., Leitch A.R., 2004. Genome evolution in allotetraploid Nicotiana. Biological Journal of the Linnean Society, 82: 599-606, https://doi.org/10.1111/j.1095-8312.2004.00344.x. Search in Google Scholar

Merxmüller H., Butler K.P., 1975. Nicotiana in der Afrikanischen Namib – ein Pflanzengeographisches und Phylogenetisches Ratsel. Mitteilungen aus der Botanischen Staatssammlung München, 12: 91-104. Search in Google Scholar

Miller R.D., 1987. Registration of TN 86 burley tobacco. Crop Science, 27: 365-366, https://doi.org/10.2135/cropsci1987.0011183X002700020059x. Search in Google Scholar

Nagata T., 2004. When I encountered tobacco BY-2 cells! Bio-technology in Agriculture and Forestry, 53: 1-5. Search in Google Scholar

Naim F., Nakasugi K., Crowhurst R.N., Hilario E., Zwart A.B., Hellens R.P., Taylor J.M., Waterhouse P.M., Wood C.C., 2012. Advanced engineering of lipid metabolism in Nicotiana benthamiana using a draft genome and the V2 viral silencing-suppressor protein. PLoS ONE, 7:e52717, https://doi.org/10.1371/journal.pone.0052717. Search in Google Scholar

Navarro-Quezada A., Gase K., Singh R.K., Pandey S.P., Baldwin I.T., 2020. Nicotiana attenuata genome reveals genes in the molecular machinery behind remarkable adaptive phenotypic plasticity. The Tobacco Plant Genome, pp. 211-229. Search in Google Scholar

Palakarcheva M., 1995. Transfer of disease resistance genes by interspecific hybridization of wild growing Nicotiana species in Nicotiana tabacum. Journal of Genetics and Breeding, pp. 99-105. Search in Google Scholar

Pombo M.A., Rosli H.G., Fernandez-Pozo N., Bombarely A., 2020. Nicotiana benthamiana, a popular model for genome evolution and plant-pathogen interactions. The Tobacco Plant Genome, 14: 231-247. Search in Google Scholar

Przybyś M., 2012. Tytoń – zielony bioreaktor. Studia i Raporty IUNG-PIB, 31(5): 133-154, doi: 10.26114/sir. iung.2012.31.06. Search in Google Scholar

Sallaud C., Giacalone C., Töpfer R. et al., 2012. Characterization of two genes for the biosynthesis of the labdane diterpene Z-abienol in tobacco (Nicotiana tabacum) glandular trichomes. Plant Journal, 72(1): 1-17. Erratum in: Plant Journal, 2013, 74(4):713. Search in Google Scholar

Schweppenhauser M.A., 1968. Recent advances in breeding tobacco resistant to Meloidogyne javanica. CORESTA Inf. Bull., 1: 9-20. Search in Google Scholar

Shinozaki K., Ohme M., Tanaka M., Wakasugi T., Hayashida N., Matsubayashi T., Zaita N., Chunwongse J., Obokata J., Yamaguchi-Shinozaki K., 1986. The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J, 5: 2043, doi: 10.1002/j.1460-2075.1986.tb04464.x. Search in Google Scholar

Shoji T., Kajikawa M., Hashimoto T., 2010. Clustered transcription factor genes regulate nicotine biosynthesis in tobacco. Plant Cell, 22(10): 3390-3409, https://doi.org/10.1105/tpc.110.078543. Search in Google Scholar

Sierro N., Battey J.N.D., Ouadi S., Bakaher N., Bovet L., Willing A., Geopfert S., Peitsch M.C., Ivanov N.V., 2014. The tobacco genome sequence and its comparison with those of tomato and potato. Nature Communications, 8;5: 3833. Search in Google Scholar

Sierro N., Battey J.N.D., Bovet L., Liedschulte V., Ouadi S.,Thomas J., Broye H., Laparra H., Vuarnoz A., Lang G., Goepfert S., Peitsch M.C., Ivanov N.V., 2018. The impact of genome evolution on the allotetraploid Nicotiana rustica – an intriguing story of enhanced alkaloid production. BMC Genomics, 19: 855. Search in Google Scholar

Sierro N., Battey J.N.D., Ouadi S., Bovet L., Goepfert S., Bakaher N., Peitsch M.C., Ivanov N.V., 2013. Reference genomes and transcriptomes of Nicotiana sylvestris and Nicotiana tomentosiformis. Genome Biology, 14(6): R60. Search in Google Scholar

Sievert R.C., 1972. Sources of resistance to potato virus Y in the genus Nicotiana. Tobacco Science, 106: 92-94. Search in Google Scholar

Sisson V.A., Severson R.F., 1990. Alkaloid composition of the Nicotiana species. Beitrage zur Tabakforschung International, 14(6): 327-339, doi: 102478/cttr-2013-0610. Search in Google Scholar

Stavely J.R., Pittarelli G.W., Burk L.G., 1973. Nicotiana repanda as a potential source for disease resistance in N. tabacum. Journal of Heredity, 64: 265-271, doi: 10.1093/oxfordjournals.jhered.a108409. Search in Google Scholar

Stehmann J.R., Semir J., Ippolito A., 2002. Nicotiana mutabilis (Solanaceae), a new species from southern Brazil. Kew Bulletin, 57: 639-646. Search in Google Scholar

Symon D.E., 1998. A new Nicotiana (Solanaceae) from near Coober Pedy, South Australia. Journal of the Adelaide Botanic Gardens, 18: 1-4. Search in Google Scholar

Symon D.E., Keneally K.F., 1994. A new species of Nicotiana (Solanaceae) from near Broome, Western Australia. Nuytsia. The journal of the Western Australian Herbarium, 9: 421-425, https://doi.org/10.58828/nuy00219. Search in Google Scholar

Symon D.E., Lepschi B.J., 2007. A new status in Nicotiana (Solanaceae): N. monoschizocarpa (P. Horton) Symon & Lepschi. Journal of the Adelaide Botanic Gardens, 21: 92. Search in Google Scholar

Thimmegowda G.C., Ramadoss S.K., Kaikala V., Rathinavelu R., Thamalampudi V.R., Dhavala V.N.C., Saiprasad G.V.S., 2018. Whole genome resequencing of tobacco (Nicotiana tabacum L.) genotypes and high-throughput SNP discovery. Molecular Breeding, 38: 121. Search in Google Scholar

TRI, 2016, Tobacco Research Institute of the Chinese. Academy of Agricultural Sciences. Bulletin. Search in Google Scholar

Trojak-Goluch A., Berbeć A., 2005. Potential of Nicotiana glauca (Grah.) as a source of resistance to black root rot Thielaviopsis basicola (Berk. and Broome)Ferr. In tobacco improvement. Plant Breeding, 124: 507-510. Search in Google Scholar

Trojak-Goluch A., Kawka-Lipińska M., 2022. Główne alkaloidy tytoniu – charakterystyka, przemiany w roślinie oraz wyzwania dla hodowli roślin. Studia i Raporty IUNG-PIB, 68(22): 129-149, https://doi.org/10.26114/sir.iung.2022.68.07. Search in Google Scholar

Trojak-Goluch A., Laskowska D., Agacka M., Czarnecka D., Kawka M., Czubacka A., 2011. Effectiveness of combining resistance to Thielaviopsis basicola and Tomato spotted wilt virus in haploid tobacco genotypes. Breeding Science, 61(4): 389-393, doi: 10.1270/jsbbs.61.389. Search in Google Scholar

Vontimitta V., Danehower D.A., Steede T., Moon H.S., Lewis R.S., 2010. Analysis of a Nicotiana tabacum L. genomic region controlling two leaf surface chemistry traits. Journal of Agricultural and Food Chemistry, 58: 294-300, doi: 10.1021/jf903256h. Search in Google Scholar

Vontimitta V., Lewis R.S., 2012. Mapping of quantitative trait loci affecting resistance to Phytophthora nicotianae in tobacco (Nicotiana tabacum L.) line Beinhart-1000. Molecular Breeding, 29: 89-98. Search in Google Scholar

Wernsman E.A., 1992. Varied roles for the haploid sporophyte in plant improvement. pp 461-484. In: Plant breeding in the 1990s.; eds: Stalker H.T., Murphy J.P.; Proc Symposium Plant Breed 1990s. CAB Int., Wallingford. Search in Google Scholar

Wylie S., Li H., 2022. Historical and scientific evidence for the origin and cultural importance to Australia’s first-nations people of the laboratory accession of Nicotiana benthamiana, a model for plant virology. Viruses, 14, 771. Search in Google Scholar

Xiao B., Tan Y., Long N., Chen X., Tong Z., Dong Y., Li Y., 2015. SNP-based genetic linkage map of tobacco (Nicotiana tabacum L.) using next-generation RAD sequencing. Journal of Biological Research-Thessaloniki, 22:11. Search in Google Scholar

Xu S., Brockmoller T., Navarro-Quezada A., Kuhl H., Gase K., Ling Z., Zhou W., Kreitzer C., Stanke M., Tang H., Lyons E., Pandey P., Pandey S.P., Timmermann B., Gaquerel E., Baldwin I.T., 2017. Wild tobacco genomes reveal the evolution of nicotine biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 114: 6133-6138, doi: 10.1073/pnas.1700073114. Search in Google Scholar

Yukawa M., Tsudzuki T., Sugiura M., 2006. The chloroplast genome of Nicotiana sylvestris and Nicotiana tomentosiformis: complete sequencing confirms that the Nicotiana sylvestris progenitor is the maternal genome donor of Nicotiana tabacum. Molecular Genetics and Genomics, 275: 367-373, doi: 10.1007/s00438-005-0092-6. Search in Google Scholar

Idioma:
Inglés
Calendario de la edición:
1 veces al año
Temas de la revista:
Ciencias de la vida, Botánica, Ecología