Acceso abierto

Riemannian foliations and the kernel of the basic Dirac operator

  
17 may 2013

Cite
Descargar portada

In this paper, in the special setting of a Riemannian foliation en- dowed with a bundle-like metric, we obtain conditions that force the vanishing of the kernel of the basic Dirac operator associated to the metric; this way we extend the traditional setting of Riemannian foli- ations with basic-harmonic mean curvature, where Bochner technique and vanishing results are known to work. Beside classical conditions concerning the positivity of some curvature terms we obtain new rela- tions between the mean curvature form and the kernel of the basic Dirac operator

Idioma:
Inglés
Calendario de la edición:
3 veces al año
Temas de la revista:
Matemáticas, Matemáticas generales