1. bookVolumen 12 (2012): Edición 1 (February 2012)
Detalles de la revista
License
Formato
Revista
eISSN
1335-8871
Primera edición
07 Mar 2008
Calendario de la edición
6 veces al año
Idiomas
Inglés
Acceso abierto

Characterization of Microwave's Antennas for Intracardiac Ablation Frequencies 915 and 2450 MHz

Publicado en línea: 01 Mar 2012
Volumen & Edición: Volumen 12 (2012) - Edición 1 (February 2012)
Páginas: 34 - 39
Detalles de la revista
License
Formato
Revista
eISSN
1335-8871
Primera edición
07 Mar 2008
Calendario de la edición
6 veces al año
Idiomas
Inglés

Nakagawa H, Yamanashi WS, Pitha JV, Comparison of in vivo temperature profile and lesion geometry for radiofrequency ablation with a saline-irrigated electrode versus temperature control in a canine thigh muscle preparation. Circulation; 91:2264-2273, 1995.10.1161/01.CIR.91.8.22647697856Search in Google Scholar

Jaïs P, Haïssaguerre M, Shah DC et al: Successful irrigated-tip catheter ablation of atrial flutter resistant to conventional radiofrequency ablation. Circulation; 98: 835-838, 1998.10.1161/01.CIR.98.9.835Search in Google Scholar

Dubuc M, Skanes A, Roy D, Thibault B, Talajic M, Guerra P: Catheter cryomapping and cryoablation of supraventricular rachycardia in man: preliminary results (abstract). PACE; 23 (II): 613, 2000.Search in Google Scholar

P. Khairy and al.; Enlargement of catheter ablation lesions in infant hearts with cryothermal versus radiofrequency energy: An animal study; circ. Arrhythm. Electrophysiol; 4; 211-217; 201110.1161/CIRCEP.110.95808221257911Search in Google Scholar

J. Philip Saul; D'ont forget to gather the evidence: myocardial effects of cryoablation in the immature heart. Circ. Arryhthm. Electrophysiol.; 4; 123-124; 2011.10.1161/CIRCEP.111.96231621505174Search in Google Scholar

Z. Gao and al; Direct measurement of the lethal isotherm for radiofrequency tissue. Circ. Arryhthm. Electrophysiol.; 4; 373-378; 2011.10.1161/CIRCEP.110.96116921406684Search in Google Scholar

M. D. Lesh, J. Diedrich, P. G. Guerra, Y. Goseki, P. B. Sparks: An anatomic approach to prevention of atrial fibrillation: Pulmonary vein isolation with through-the-balloon Ultrasound ablation. Thorac. Cardiovasc. Surg., 47 (Suppl.): 347-351, 1999.Search in Google Scholar

R. Svenson, L. Littman, R. Splinlen: Application of lasers for arrhythmia ablation. In Zipes D.; Jalife J. (eds): Cardiac Electrophysiology from cell to Beside. Philadelphia, WB Saunders, 989-997, 1990.Search in Google Scholar

S. G. Splitzer, P. Richter, M. Knaut, S. Schuler: Treatment of atrial fibrillation in open heart surgery. The potential role of microwave energy. Thorac. Cardiovasc. Surg., 47 (Suppl.), 374-378, 1999.10.1055/s-2007-101320410520773Search in Google Scholar

P. Adragao, L. Parreira, F. Morgado, D. Bonhorst, R. Seabra-Gomes: Microwave ablation of atrial flutter. PACE, 22:1692-1695, 1999.Search in Google Scholar

B. A. Vanderbrink, C. Gilbride: Safety and efficacy of a steerable temperature monitoring microwave catheter system for ventricular myocardial ablation, J. Cardio. Electrophysiology, 11:305-310, 2000.Search in Google Scholar

R. W. P. King, B. S. Trembly, J. W. Strohbehn: The electromagnetic field of an insulated antenna in a conducting medium. IEEE Trans. Microwave Theory Tech., vol. 31, pp. 574-583, 1983.10.1109/TMTT.1983.1131547Search in Google Scholar

Polk C., Postow E.: CRC Handbook of Biological Effect of Electromagnetic Fields. CRC Press, 1986.Search in Google Scholar

J. Klima, R. Ščehovič: The field strength measurement and SAR experience related to human exposure in 110MHz to 40 GHz; Measurement Science review, Vol.6; Section2, N○4, pp.40-44, 2006.Search in Google Scholar

K. Watanabe, Y. Taka, O. Fujiwara: Cole-Cole measurement of dispersion properties for quality evaluation of red wine; Measurement Science Review, Vol. 9, N○5, pp.113-116, 2009.10.2478/v10048-009-0025-3Search in Google Scholar

C. K. Chou, G. W. Chen, A. W. Guy, K. H. Luk: Formulas for preparing phantom muscle tissue at various radiofrequencies. Bioelectromagnetics, vol.5, pp. 435-441, 1984.10.1002/bem.22500504086517962Search in Google Scholar

D. Bérubé, F. M. Ghannouchi, P. Savard, I. Jolicoeur: A Comparative study of four open-ended coaxial probe models for permittivity measurements of lossy dielectric/biological material at microwave frequencies. IEEE Trans. M. T. T., vol. 44 (part II), pp. 1928-1934, 1996.Search in Google Scholar

Labonte, A. Blais, R. Legault, H. O. Ali, L. Roy: Monopole Antennas for microwave catheter ablation. IEEE Trans. Microwave Theorie Techn., vol.44, pp. 1848-1854, 1996.Search in Google Scholar

J. C. Camart, J. J. Fabre, B. Provost, J. Pribetich, M. Chive: Coaxial antenna array for 915 MHz interstitial hyperthermia: Design and modelization - Power deposition and heating pattern - Phased array. IEEE Trans. Microwave Theory Tech., vol.40, pp. 2243-2250, 1992.Search in Google Scholar

M. S. Mirotznik, N. Engheta, K. R. Foster: Heating characteristics of thin helical antennas with conducting cores in a lossy medium - I: Noninsulated Antennas. IEEE Trans. Microwave Theory Tech., vol.41, pp. 1878-1886, 1993.Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo