Cite

Adam, G., Duncan, H. (2001). Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biol. Biochem., 33, 943-951.10.1016/S0038-0717(00)00244-3Search in Google Scholar

Archer, F., Manu, A., Laymon, C. A., Senwo, Z. N., Coleman, T. L. (1999). Soil moisture variability on the landscape as a function of land use: Impli­cation for remote sensing of surface soil moisture. In: IGARSS '99 Proceed­ings. IEEE 1999 International, Geoscience and Remote Sensing Sympo­sium, Hamburg, 28 June - 2 July. Vol. 2, pp. 1102-1004.10.1109/IGARSS.1999.774546Search in Google Scholar

Bolton, H., Elliott, L. F., Papendick, R. I., Bezdicek, D. F. (1985). Soil mi­crobial biomass and selected soil enzyme activities: Effect of fertilization and cropping practices. Soil Biol. Biochem., 17 (3), 29 -302.Search in Google Scholar

Brooke, P. (2001). The soil microbial biomass: Concept, measurement and applications in soil ecosystem research. Microb. Environ., 16, 131-140.10.1264/jsme2.2001.131Search in Google Scholar

Carter, M. R., Noronha, C., Peters, R. D., Kimpinski, J. (2009). Influence of conservation tillage and crop rotation on the resilience of an intensive long-term potato cropping system: Restoration of soil biological properties after the potato phase. Agric. Ecosyst. Environ., 133, 32-39.10.1016/j.agee.2009.04.017Search in Google Scholar

Chen, W., Hoitink, H. A. J., Schmitthenner, A. F., Tuovinen, O. H. (1988). The role of microbial activity in suppression of damping-off caused by Pythium ultimum. Phytopathology, 78 (3), 314-322.10.1094/Phyto-78-314Search in Google Scholar

Franchini, J. C., Crispino, C. C., Souza, R. A., Torres E., Hungria, M. (2007). Microbiological parameters as indicators of soil quality under various soil management and crop rotation systems in southern Brazil. Soil. Till. Res., 92, 18-29.10.1016/j.still.2005.12.010Search in Google Scholar

Grandy, A. S., Robertson, G. P., Thelen, K. D. (2006). Do productivity and environmental trade-offs justify periodically cultivating no-till cropping systems? Agron. J., 98, 1377-1383.Search in Google Scholar

Govaerts, B., Mezzalama, M., Sayre, K. D., Crossa, J., Lichter, K., Troch, V., Vanherck, K., De Corte, P., Deckers, J. (2008). Long-term consequences of tillage, residue management, and crop rotation on selected soil micro-flora groups in the subtropical highlands. Appl. Soil. Ecol., 38, 197-210.10.1016/j.apsoil.2007.10.009Search in Google Scholar

Hayano, K. (1997). Measurement of soil enzyme activity. In:Experimental Methods in Soil Microbiology (pp. 365-367). Hattori, T., Nishino, T., Miyashita, K. (eds.). New Edition, Youken-dou, Tokyo (in Japanese).Search in Google Scholar

Hungria, M., Franchini, J. C., Brandao-Junior, O., Kaschuk, G., Souza, R. A. (2009). Soil microbial activity and crop sustainability in a long-term exper­iment with three soil-tillage and two crop-rotation systems. Appl. Soil Ecol, 42, 288-296.10.1016/j.apsoil.2009.05.005Search in Google Scholar

Kandeler, E., Gerber, H. (1988). Short-term assay of soil urease activity us­ing colorimetric determination of ammonium. Biol. Fertility Soils, 6, 68-72.10.1007/BF00257924Search in Google Scholar

Lagomarsino, A., Moscatelli, M. C., Di Tizio, A., Mancinelli, R., Grego, S., Marinari, S. (2009). Soil biochemical indicators as a tool to assess the short-term impact of agricultural management on changes in organic C in a Mediterranean environment. Ecol. Ind., 9, 518-527.10.1016/j.ecolind.2008.07.003Search in Google Scholar

Lejins, A., Lejina, B. (2008). The influence of crop rotation and plant-protection-complex on buckwheat and potato yield. Agron. Vestis, 11, 235-239.Search in Google Scholar

Mäder, P., Fliebach, A., Dubois, D., Gunst, L., Fried, P., Niggli, U. (2002). Soil fertility and biodiversity in organic farming. Science, 296,1694-1697.10.1126/science.1071148Search in Google Scholar

Martinez-Salgado M., Gutierrez-Romero, V., Jannsens, M., Ortega-Blu, R. (2010). Biological soil quality indicators: a review. In: Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology. Mendez-Vilas A. (Ed.), pp. 319-328; <http://www.formatex.info/microbiology2/319-328.pdf>.Search in Google Scholar

Natywa, M., Sawicka, A., Wolna-Maruwka, A. (2010). Aktywnosc mikrobiologiczna i enzymatyczna gleby pod uprawq kukurydzy w zaleznosci od zroznicowanego nawozenia azotem. Woda-Srodowisko- Obszary Wiejsie, 10, 2(30), 111-120.Search in Google Scholar

Parkinson, D., Coleman, D. (1991). Microbial communities, activity and bio­mass. Agr. Ecosyst. Environ., 34 (1-4), 3-33.10.1016/0167-8809(91)90090-KSearch in Google Scholar

Parmar, N., Dardarwal, K. R. (1999). Stimulation of nitrogen fixation induc­tion of flavonoid like compounds by rhizobacteria. J. Appl. Microbiol., 86, 36-44.10.1046/j.1365-2672.1999.00634.xSearch in Google Scholar

Pell, M., Stenström, J., Granhall, U. (2005). Soil respiration. In: Microbio­logical Methods for Assessing Soil Quality (pp. 117-126). Bloem, J., Hopkins, W. D, Benedetti, A. (eds.). Wallingford, Oxfordsire: CABI Pub­lishing.Search in Google Scholar

Rancāne, S., Jansone, B., Tiltina, L. (2009). Griku audzesanas agrotehnika [Agrotechnics of buckwheat cultivation]. Agrotops, Nr. 6.Search in Google Scholar

Shannon D, Sen, A., Johnson, D. (2002). A comparative study of the micro­biology of soil structure under organic and conventional regimes. Soil Use Manag., 18, 274-283.10.1079/SUM2002130Search in Google Scholar

Silva, A. P., Babujia, L. C., Franchini, J. C., Souza, R. A., Hungria, M. (2010). Microbial biomass under various soil- and crop-management sys­tems in short- and long-term experiments in Brazil. Field Crops Res., 119, 20-26.10.1016/j.fcr.2010.06.012Search in Google Scholar

Stark, C., Condron, L. M., Stewart, A., Di, H. J., O'Callaghan, M. (2006). Ef­fects of past and current crop management on soil microbial biomass and activity. Biol. Fert. Soils, 43 (5), 531-540.Search in Google Scholar

Sturz, A. V., Christie, B. R. (2003). Beneficial microbial allellopathies in the root zone: The management of soil quality and plant disease with rhizobacteria. Soil Tillage Res., 72, 107-123.10.1016/S0167-1987(03)00082-5Search in Google Scholar

Tate, R. L. (1995). Soil Microbiology. New York: John Wiley & Sons Incor­poration. 398 pp.Search in Google Scholar

Trasar-Cepeda, C., Leiro's, M. C., Seoane, S., Gil-Sotres, F. (2008). Bio­chemical properties of soils under crop rotation. Appl. Soil Ecol., 39, 133-143.10.1016/j.apsoil.2007.12.003Search in Google Scholar

Tu, C., Louws, F. J., Creamer, G. J., Mueller, P. J. Brownie, C., Fager, K., Bell, M., Hu, S. (2006). Responses of soil microbial biomass and N avail­ability to transition strategies from conventional to organic farming sys­tems. Agr. Ecosyst. Environ., 113, 206-215.10.1016/j.agee.2005.09.013Search in Google Scholar

Tu, C , Ristaino, B. J, Hu, S. (2006a). Soil microbial biomass and activity in organic tomato farming systems: Effects of organic inputs and straw mulching. Soil Biol. Biochem., 38 (1-2) 247-255.10.1016/j.soilbio.2005.05.002Search in Google Scholar

Zagal, E., Munoz, C., Quiroz, M., Cordova, C. (2009). Sensitivity of early in­dicators for evaluating quality changes in soil organic matter. Geoderma, 151, 191-198.10.1016/j.geoderma.2009.04.004Search in Google Scholar

Клинцаре A. (1983). Пестициды и микрофлора растений [Pesticides and Microflora of Plants]. Рига: Зинатне, 165 pp. (in Russian).Search in Google Scholar

Павловича Д. (1978). Актиномицеты в Латвии [Actinomyces in Lat­via]. Рига: Зинатне. 197 c. (in Russian).Search in Google Scholar

ISSN:
1407-009X
Idioma:
Inglés
Calendario de la edición:
6 veces al año
Temas de la revista:
General Interest, Mathematics, General Mathematics