Cite

M. K. Franchini, Particle Engineering, in Encyclopedia of Pharmaceutical Technology (Ed. J. Swarbrick), 3rd ed., Taylor & Francis, New York 2006, DOI: 10.1081/E-EPT-120030638.Search in Google Scholar

J. C. Chaumeil, Micronization: A method of improving the bioavailability of poorly soluble drugs, Methods Find. Exp. Clin. Pharmacol. 20 (1998) 211-215.Search in Google Scholar

J. C. Feeley, P. York, B. S. Sumby and H. Dicks, Determination of surface properties and flow characteristics of salbutamol sulphate, before and after micronization, Int. J. Pharm. 172 (1998) 89-96; DOI: 10.1016/S0378-5173(98)00179-3.10.1016/S0378-5173(98)00179-3Search in Google Scholar

M. M. de Villiers, Influence of cohesive properties of micronized drug powders on particle size analysis, J. Pharm. Biom. Anal. 13 (1995) 191-198; DOI: 10.1016/0731-7085(95)01274-O.10.1016/0731-7085(95)01274-OSearch in Google Scholar

A. K. Tiwary, Crystal Habit Changes and Dosage Form Performance, in Encyclopedia of Pharmaceutical Technology (Ed. J. Swarbrick), 3rd ed., Taylor & Francis, New York 2006, pp. 820-833; DOI: 10.1081/E-EPT-120019306.Search in Google Scholar

D. Kaul, N. T. Nguyen and S. Venkataram, Crystal habit modifications and altered tabletting characteristics, Int. J. Pharm. 88 (1992) 345-350; DOI: 10.1016/0378-5173(92)90333-W.10.1016/0378-5173(92)90333-WSearch in Google Scholar

H. A. Garekani, F. Sadeghi, A. Badiee, S. A. Mostafa and A. R. Rajabi-Siahboomi, Crystal habit modifications of ibuprofen and their physicochemical characteristics, Drug Dev. Ind. Pharm. 27 (2001) 803-809; DOI: 10.1081/DDC-100107242.10.1081/DDC-100107242Search in Google Scholar

N. Rasenack and B W. Müller, Ibuprofen crystals with optimized properties, Int. J. Pharm. 245 (2002) 9-24; DOI: 10.1016/S0378-5173(02)00294-6.10.1016/S0378-5173(02)00294-6Search in Google Scholar

K. R. Morris, U. J. Griesser, C. J. Eckhardt and J. G. Stowell, Theoretical approaches to physical transformations of active pharmaceutical ingredients during manufacturing processes, Adv. Drug Del. Rev. 48 (2001) 91-114; DOI: 10.1016/S0169-409X(01)00100-4.10.1016/S0169-409X(01)00100-4Search in Google Scholar

Y. Kawashima and C. E. Capes, An experimental study of the kinetics of spherical agglomeration in a stirred vessel, Powder Technol. 10 (1974) 85-92; DOI: 10.1016/0032-5910(74)85036-9.10.1016/0032-5910(74)85036-9Search in Google Scholar

Y. Kawashima, Development of spherical crystallization technique and its application to pharmaceutical systems, Arch. Pharm. Res. 7 (1984) 145-151; DOI: 10.1007/BF02856629.10.1007/BF02856629Search in Google Scholar

N. Rodriguez-Hornedo, R. C. Kelly, B. D. Sinclair and J. M. Miller, Crystallization: General Principles and Significance on Product Development, in Encyclopedia of Pharmaceutical Technology (Ed. J. Swarbrick), 3rd ed., Taylor & Francis Group, New York 2006, pp. 834-857; DOI: 10.1081/E-EPT-120041347.Search in Google Scholar

A. S. Myerson and R. Ginde, Crystals, Crystal Growth, and Nucleation, in Handbook of Industrial Crystallization (Ed. A. S. Myerson), 2nd ed., Butterworth-Heinemann, Woburn 2001, pp. 33-65; DOI: 10.1016/B978-075067012-8/50004-5.10.1016/B978-075067012-8/50004-5Search in Google Scholar

J. W. Mullin, Crystal Growth, in Crystallization (Ed. J. W. Mullin), 4th ed., Butterworth-Heinemann, Woburn 2001, pp. 216-288; DOI: 10.1016/B978-075064833-2/50008-5.10.1016/B978-075064833-2/50008-5Search in Google Scholar

R. F. Sekerka, Theory of Crystal Growth Morphology, in Crystal Growth: From Fundamentals to Technology (Eds. G. Müller, J. Métois and P. Rudolph), Elsevier, Amsterdam 2004, pp. 55-93; DOI: 10.1016/B978-044451386-1/50005-2.10.1016/B978-044451386-1/50005-2Search in Google Scholar

Y. Kawashima, M. Okumura and H. Takenaka, The effects of temperature on the spherical crystallization of salicylic acid, Powder Technol. 39 (1984) 41-47; DOI: 10.1016/0032-5910(84)85018-4.10.1016/0032-5910(84)85018-4Search in Google Scholar

H. Göczo, P. Szabó-Révész, B. Farkas, M. Hasznos-Nezdei, S. F. Serwanis, A. K. Pintye-Hódi, P. Kása, Jr., I. Eros, I. Antal and S. Marto, Development of spherical crystals of acetylsalicylic acid for direct tablet-making, Chem. Pharm. Bull. 48 (2000) 1877-1881.10.1248/cpb.48.1877Search in Google Scholar

A. F. Blandin, D. Mangin, A. Rivoire, J. P. Klein and J. M. Bossoutrot, Agglomeration in suspension of salicylic acid fine particles: influences of some process parameters on kinetics and agglomerate final size, Powder Technol. 130 (2003) 316-323; DOI: 10.1016/S0032-5910(02)00210-3.10.1016/S0032-5910(02)00210-3Search in Google Scholar

Y. Kawashima, K. Furukawa and H. Takenaka, The physicochemical parameters determining the size of agglomerate prepared by the wet spherical agglomeration technique, Powder Technol. 30 (1981) 211-216; DOI: 10.1016/0032-5910(81)80014-9.10.1016/0032-5910(81)80014-9Search in Google Scholar

A. S. Bos and F. J. Zuiderweg, Kinetics of continuous agglomeration in suspension, Powder Technol. 44 (1985) 43-51; DOI: 10.1016/0032-5910(85)85019-1.10.1016/0032-5910(85)85019-1Search in Google Scholar

Z. Sadowski, Selective spherical agglomeration of fine salt-type mineral particles in aqueous solution, Colloids and Surf. A: Physicochem. Eng. Aspects 96 (1995) 277-285; DOI: 10.1016/0927-7757(94)03042-X.10.1016/0927-7757(94)03042-XSearch in Google Scholar

C. Skarvelakis and G. Antonini, Kinetics of agglomerate growth in a continuous coal-oil purification process, Powder Technol. 85 (1995) 135-141; DOI: 10.1016/0892-6875(89)90038-1.10.1016/0892-6875(89)90038-1Search in Google Scholar

B. A. Snyder and J. C. Berg, Oil-assisted agglomeration for toner deinking: Population balance model and experiments, AlChE J. 43 (1997) 1480-1487; DOI: 10.1002/aic.690430611.10.1002/aic.690430611Search in Google Scholar

J. S. Laskowski and Z. Yu, Oil agglomeration and its effect on beneficiation and filtration of low-rank/oxidized coals, Int. J. Min. Proc. 58 (2000) 237-252; DOI: 10.1016/S0301-7516(99)90040-6.10.1016/S0301-7516(99)90040-6Search in Google Scholar

C. I. House and C. J. Veal, Selective recovery of chalcopyrite by spherical agglomeration, Min. Eng. 2 (1989) 171-184; DOI: 10.1016/0892-6875(89)90038-1.10.1016/0892-6875(89)90038-1Search in Google Scholar

A. Y. Huang and J. C. Berg, Gelation of liquid bridges in spherical agglomeration, Colloids and Surf. A: Physicochem. Eng. Aspects 215 (2003) 241-252; DOI: 10.1016/S0927-7757(02)00488-0.10.1016/S0927-7757(02)00488-0Search in Google Scholar

S. Mahanty, J. Sruti, C. Niranjan Patra and M. E. Bhanoji Rao, Particle design of drugs by spherical crystallization techniques, Int. J. Pharm. Sci. Nanotech. 3 (2010) 912-918.Search in Google Scholar

J. Thati and Å. C. Rasmuson, On the mechanisms of formation of spherical agglomerates, Eur. J. Pharm. Sci. 42 (2011) 365-379; DOI: 10.1016/j.ejps.2011.01.001.10.1016/j.ejps.2011.01.001Search in Google Scholar

Y. Kawashima, F. Cui, H. Takeuchi, T. Niwa, T. Hino and K. Kiuchi, Parameters determining the agglomeration behaviour and the micromeritic properties of spherically agglomerated crystals prepared by the spherical crystallization technique with miscible solvent systems, Int. J. Pharm. 119 (1995) 139-147; DOI: 10.1016/0378-5173(94)00380-N.10.1016/0378-5173(94)00380-NSearch in Google Scholar

J. Katta and A. C. Rasmuson, Spherical crystallization of benzoic acid, Int. J. Pharm. 348 (2008) 61-69; DOI: 10.1016/j.ijpharm.2007.07.006.10.1016/j.ijpharm.2007.07.006Search in Google Scholar

H. Zhang, Y. Chen, J. Wang and J. Gong, Investigation on the spherical crystallization process of cefotaxime sodium, Ind. Eng. Chem. Res. 49 (2010) 1402-1411; DOI: 10.1021/ie901001c.10.1021/ie901001cSearch in Google Scholar

D. Amaro-González and B. Biscans, Spherical agglomeration during crystallization of an active pharmaceutical ingredient, Powder Technol. 128 (2002) 188-194; DOI: 10.1016/S0032-5910(02)00196-1.10.1016/S0032-5910(02)00196-1Search in Google Scholar

A. H. L. Chow and M. W. M. Leung, A study of the mechanisms of wet spherical agglomeration of pharmaceutical powders, Drug Dev. Ind. Pharm. 22 (1996) 357-371; DOI: 10.3109/03639049609042001.10.3109/03639049609042001Search in Google Scholar

M. Maghsoodi, Effect of process variables on physicomechanical properties of the agglomerates obtained by spherical crystallization technique, Pharm. Dev. Technol. 16 (2011)474-482; DOI: 10.3109/10837450.2010.492218.10.3109/10837450.2010.49221820557281Search in Google Scholar

Y. Kawashima, T. Niwa, T. Handa, H. Takeuchi, T. Iwamoto and K. Itoh, Preparation of controlled-release microspheres of ibuprofen with acrylic polymers by a novel quasi-emulsion solvent diffusion method, J. Pharm. Sci. 78 (1989) 68-72; DOI: 10.1002/jps.2600780118.10.1002/jps.26007801182709323Search in Google Scholar

A. Sano, T. Kuriki, Y. Kawashima, T. Hino and T. Niwa, Particle design of tolbutamide by the spherical crystallization technique. III. Micromeritic properties and dissolution rate of tolbutamide spherical agglomerates prepared by the quasi-emulsion solvent diffusion method and the solvent change method, Chem. Pharm. Bull. 38 (1990) 733-739.10.1248/cpb.38.733Search in Google Scholar

K. Morishima, Y. Kawashima, H. Takeuchi, T. Niwa and T. Hino, Micromeritic characteristics and agglomeration mechanisms in the spherical crystallization of bucillamine by the spherical agglomeration and the emulsion solvent diffusion methods, Powder Technol. 76 (1993) 57-64; DOI: 10.1016/0032-5910(93)80041-8.10.1016/0032-5910(93)80041-8Search in Google Scholar

F. Espitalier, B. Biscans and C. Laguérie, Particle design Part A: Nucleation kinetics of ketoprofen, Chem. Eng. J. 68 (1997) 95-102; DOI: 10.1016/S1385-8947(97)00089-2.10.1016/S1385-8947(97)00089-2Search in Google Scholar

Y. Kawashima, M. Imai, H. Takeuchi, H. Yamamoto, K. Kamiya and T. Hino, Improved flowability and compactibility of spherically agglomerated crystals of ascorbic acid for direct tabletting designed by spherical crystallization process, Powder Technol. 130 (2003) 283-289; DOI: 10.1016/S0032-5910(02)00206-1.10.1016/S0032-5910(02)00206-1Search in Google Scholar

M. Nocent, L. Bertocchi, F. Espitalier, M. Baron and G. Couarraze, Definition of a solvent system for spherical crystallization of salbutamol sulfate by quasi-emulsion solvent diffusion (QESD) method, J. Pharm. Sci. 90 (2001) 1620-1627; DOI: 10.1002/jps.1112.10.1002/jps.1112Search in Google Scholar

F. Espitalier, B. Biscans and C. Laguérie, Particle design Part B: batch quasi-emulsion process and mechanism of grain formation of ketoprofen, Chem. Eng. J. 68 (1997) 103-114; DOI: 10.1016/S1385-8947(97)00057-0.10.1016/S1385-8947(97)00057-0Search in Google Scholar

Z. Zhang, Z. Shen, J. Wang, H. X. Zhang, H. Zhao, J. F. Chen and J. Yun, Micronization of silybin by the emulsion solvent diffusion method, Int. J. Pharm. 376 (2009) 116-122; DOI: 10.1016/j.ijpharm.2009.04.028.10.1016/j.ijpharm.2009.04.02819409464Search in Google Scholar

M. Maghsoodi and M. Esfehani, Preparation of microparticles of naproxen with Eudragit RS and Talc by spherical crystallization technique, Pharm. Dev. Technol. 14 (2009) 442-450; DOI: 10.1080/10837450902748404.10.1080/1083745090274840419235551Search in Google Scholar

M. Ueda, Y. Nakamura, H. Makita, Y. Imasato and Y. Kawashima, Particle design of enoxacinby spherical crystallization technique. I. Principle of ammonia diffusion system (ADS), Chem. Pharm. Bull. 38 (1990) 2537-2541.10.1248/cpb.38.2537Search in Google Scholar

S. Bhadra, M. Kumar, S. Jain, S. Agrawal and G. P. Agrawal, Spherical crystallization of mefenamic acid, Pharm. Technol. (2004) 66-76.Search in Google Scholar

H. G. Puechagut, J. Bianchotti and C. A. Chiale, Preparation of norfloxacin spherical agglomerates using the ammonia diffusion system, J. Pharm. Sci. 87 (1998) 519-523; DOI: 10.1021/js960463w.10.1021/js960463w9548908Search in Google Scholar

S. S, Kadam, K. R. Mahadik and A. R. Paradkar, A Process for Making Agglomerates for Use as Or in a Drug Delivery System, Indian Patent 183036, 14 Feb 1997.Search in Google Scholar

A. Pawar, A. Paradkar, S. Kadam and K. Mahadik, Agglomeration of ibuprofen with talc by novel crystallo-co-agglomeration technique, AAPS Pharm. Sci. Tech. 5 (2004) Article 55; DOI: 10.1208/pt050455.10.1208/pt050455Search in Google Scholar

M. Maghsoodi, O. Taghizadeh, G. P. Martin and A. Nokhodchi, Particle design of naproxen-disintegrant agglomerates for direct compression by a crystallo-co-agglomeration technique, Int. J. Pharm. 351 (2008) 45-54; DOI: 10.1016/j.ijpharm.2007.09.033.10.1016/j.ijpharm.2007.09.033Search in Google Scholar

A. Pawar, A. Paradkar, S. Kadam and K. Mahadik, Crystallo-co-agglomeration: A novel technique to obtain ibuprofen-paracetamol agglomerates, AAPS Pharm. Sci. Tech. 5 (2004) Article 44; DOI: 10.1208/pt050344.10.1208/pt050344Search in Google Scholar

A. Pawar, A. R. Paradkar, S. S. Kadam and K. R. Mahadik, Effect of polymers on crystallo-co-agglomeration of ibuprofen-paracetamol: Factorial design, Ind. J. Pharm. Sci. 69 (2007) 658-664; DOI: 10.4103/0250-474X.38471.10.4103/0250-474X.38471Search in Google Scholar

P. Szabó-Révész, H. Göczo, K. Pintye-Hodi, P. Kása, Jr., I. Erõs, M. Hasznos-Nezdei and B. Farkas, Development of spherical crystal agglomerates of an aspartic acid salt for direct tablet making, Powder Technol. 114 (2001) 118-124; DOI: 10.1016/S0032-5910(00)00272-2.10.1016/S0032-5910(00)00272-2Search in Google Scholar

M. Maghsoodi, D. Hassan-Zadeh, M. Barzegar-Jalali, A. Nokhodchi and G. Martin, Improved compaction and packing properties of naproxen agglomerated crystals obtained by spherical crystallization technique, Drug Dev. Ind. Pharm. 33 (2007) 1216-1224; DOI: 10.1080/03639040701377730.10.1080/0363904070137773018058318Search in Google Scholar

M. Maghsoodi and A. S. Tajalli Bakhsh, Evaluation of physico-mechanical properties of drug-excipients agglomerates obtained by crystallization, Pharm. Dev. Technol. 16 (2011) 243-249; DOI: 10.3109/10837451003610837.10.3109/1083745100361083720175665Search in Google Scholar

A. Nokhodchi and M. Maghsoodi, Preparation of spherical crystal agglomerates of naproxen containing disintegrant for direct tablet making by spherical crystallization technique, AAPS PharmSciTech. 9 (2008) 54-59; DOI: 10.1208/s12249-007-9019-3.10.1208/s12249-007-9019-3297689218446461Search in Google Scholar

A. N. Usha, S. Mutalik, M. S. Reddy and A. K. Ranjith, Preparation and, in vitro, preclinical and clinical studies of aceclofenac spherical agglomerates, Eur. J. Pharm. Biopharm. 70 (2008) 674-683; DOI: 10.1016/j.ejpb.2008.06.010.10.1016/j.ejpb.2008.06.01018606224Search in Google Scholar

S. Kumar, G. Chawla and A. K. Bansal, Spherical crystallization of mebendazole to improve processability, Pharm. Dev. Technol. 13 (2008) 559-568; DOI: 10.1080/10837450802310180.10.1080/1083745080231018018720249Search in Google Scholar

C. L. Viswanathan, S. K. Kulkarni and D. R. Kolwankar, Spherical agglomeration of mefenamic acid and nabumetone to improve micromeritics and solubility: A technical note, AAPS Pharm SciTech 7 (2006) E122-E125, DOI: 10.1208/pt070248.10.1208/pt070248Search in Google Scholar

V. R. Gupta, S. Mutalik, M. M. Patel and G. K. Jani, Spherical crystals of celecoxib to improve solubility, dissolution rate and micromeritic properties, Acta Pharm. 57 (2007) 173-184; DOI: 10.2478/v10007-007-0014-8.10.2478/v10007-007-0014-8Search in Google Scholar

A. R. Paradkar, A. P. Pawar, J. K. Chordiya, V. B. Patil and A. R. Ketkar, Spherical crystallization of celecoxib, Drug Dev. Ind. Pharm. 28 (2002) 1213-1220; DOI: 10.1081/DDC-120015354.10.1081/DDC-120015354Search in Google Scholar

P. Di Martino, C. Barthélémy, F. Piva, E. Joiris, G. F. Palmieri and S. Martelli, Improved dissolution behavior of fenbufen by spherical crystallization, Drug Dev. Ind. Pharm. 25 (1999) 1073-1081; DOI: 10.1081/DDC-100102272.10.1081/DDC-100102272Search in Google Scholar

M. Maghsoodi and F. Sadeghpoor, Preparation and evaluation of solid dispersions of piroxicam and Eudragit S100 by spherical crystallization technique, Drug Dev. Ind. Pharm. 36 (2010) 917-925; DOI: 10.3109/03639040903585127.10.3109/03639040903585127Search in Google Scholar

F. Cui, M. Yang, Y. Jiang, D. Cun, W. Lina, Y. Fana and Y. Kawashimab, Design of sustained-release nitrendipine microspheres having solid dispersion structure by quasi-emulsion solvent diffusion method, J. Control. Release 91 (2003) 375-384; DOI: 10.1016/S0168-3659(03)00275-X.10.1016/S0168-3659(03)00275-XSearch in Google Scholar

M. Yang, F. Cui, B. You, Y. Fan, L. Wang, P. Yue and H. Yang, Preparation of sustained-release nitrendipine microspheres with Eudragit RS and Aerosil using quasi-emulsion solvent diffusion method, Int. J. Pharm. 259 (2003) 103-113; DOI: 10.1016/S0378-5173(03)00209-6.10.1016/S0378-5173(03)00209-6Search in Google Scholar

J. Varshosaz, N. Tavakoli and F. A. Salamat, Enhanced dissolution rate of simvastatin using spherical crystallization technique, Pharm. Dev. Technol. 16 (2011) 529-535; DOI: 10.3109/10837450.2010.502175.10.3109/10837450.2010.50217520684739Search in Google Scholar

eISSN:
1846-9558
ISSN:
1330-0075
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Pharmacy, other