Acceso abierto

Application of Recombinant DNA Methods for Production of Cholinesterases as Organophosphate Antidotes and Detectors

Taylor P. Anticholinesterase Agents in Goodman and Gilman's Pharmacological Basis of Therapeutics. 10th ed. New York: McGraw-Hill; 2005.Search in Google Scholar

Taylor P, Kovarik Z, Reiner E, Radić Z. Acetylcholinesterase: Converting a vulnerable target to a template for antidotes and detection of inhibitor exposure. Toxicology 2007;233:70-8.10.1016/j.tox.2006.11.061Search in Google Scholar

Giacobini E, editor. Cholinesterases and Cholinesterase Inhibitors. London: Martin Dunitz; 2000.Search in Google Scholar

Wilson IB. Molecular complementarity and antidotes for organophosphate poisoning. Fed Proc 1959;18:752-8.Search in Google Scholar

Schumacher M, Camp S, Maulet Y, Newton M, Mac-Phee-Quigley K, Taylor S, Friedmann T, Taylor P. Primary structure of Torpedo californica acetylcholinesterase deduced from its cDNA sequence. Nature 1986319:407-9.10.1038/319407a0Search in Google Scholar

Rachinsky T, Camp S, Li Y, Ekstrom TJ, Newton M, Taylor P. Molecular cloning of mouse acetylcholinesterase: Tissue distribution of alternatively spliced mRNA species. Neuron 1990;5:317-27.10.1016/0896-6273(90)90168-FSearch in Google Scholar

Lockridge O, Bartels CF, Vaughan TA, Wong CK, Norton SE, Johnson LL. Complete amino acid sequence of human serum cholinesterase. J Biol Chem 1987;262:549-57.10.1016/S0021-9258(19)75818-9Search in Google Scholar

Sussman JL, Harel M, Frolow F, Oefner C, Goldman A, Toker L, Silman I. Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine binding protein. Science 1991;253:872-9.10.1126/science.1678899Search in Google Scholar

Bourne Y, Taylor P, Marchot P. Acetylcholinesterase inhibition by fasciculin: crystal structure of the complex. Cell 1995;83:493-506.10.1016/0092-8674(95)90128-0Search in Google Scholar

Radić Z. Pickering N, Vellom DC, Camp S, Taylor P. Three distinct domains in the cholinesterase molecule confer selectivity of acetyl- and butyrylcholinesterase inhibitors. Biochemistry 1993;32:12074-84.10.1021/bi00096a018Search in Google Scholar

Shafferman A, Ordentlich A, Barak D, Kronman C, Ber R, Bino T, Ariel N, Osman R, Velan B. Electrostatic attraction by surface charge does not contribute to the catalytic efficiency of acetylcholinesterase. EMBO J 199413:3448-55.10.1002/j.1460-2075.1994.tb06650.xSearch in Google Scholar

Radić Z, Kirchoff PD, Quinn DM, McCammon JM, Taylor P. Electrostatic influence on the kinetics of ligand binding to acetylcholinesterase. J Biol Chem 1997;272:23265-77.10.1074/jbc.272.37.23265Search in Google Scholar

Lewis WG, Green LG, Gynszpan F, Radić Z, Carlier PR, Taylor P, Finn MG, Sharpless KB. Click chemistry in situ: acetylcholinesterase as a reaction vessel for the selective assembly of femtomolar inhibitor from an array of building blocks. Angew Chem 2002;41:1053-7.10.1002/1521-3773(20020315)41:6<1053::AID-ANIE1053>3.0.CO;2-4Search in Google Scholar

Manetsch R, Kransinski A, Radić Z, Raushel J, Taylor P, Sharpless KB, Kolb HC. In situ click chemistry: enzyme inhibitors made to their own specifications. J Am Chem Soc 2004;126:12809-18.10.1021/ja046382gSearch in Google Scholar

Bourne Y, Kolb HC, Radić Z, Sharpless KB Taylor P, Marchot P. Freeze-frame inhibitor captures acetylcholinesterase in a unique conformation. Proc Natl Acad Sci USA 2004;101:1449-54.10.1073/pnas.0308206100Search in Google Scholar

Radić Z, Manetsch R, Fournier D, Sharpless KB, Taylor P. Probing gorge dimensions of cholinesterases by freeze-frame click chemistry. In: The IXth International Meeting on Cholinesterases; 6-10 May 2007; Suzhou, China. Program Book. p. 40. Abstract S-IV-2.Search in Google Scholar

Wilson IB, Ginsburg S. A powerful reactivator of alkylphosphate-inhibited acetylcholinesterase. Biochim Biophys Acta 1955;18:168-70.10.1016/0006-3002(55)90040-8Search in Google Scholar

Ashani Y, Radić Z, Tsigelny I, Vellom DC, Pickering NA, Quinn DC, Doctor BP, Taylor P. Aminoacid residues controlling reactivation of organophosphonyl conjugates of acetylcholinesterase by mono-and bisquaternary oximes. J Biol Chem 1995;270:6370-80.10.1074/jbc.270.11.63707890775Search in Google Scholar

Hosea NA, Berman HA, Taylor P. Specificity and orientation of trigonal carboxyl esters and tetrahedral alkyl phosphonyl esters in cholinesterases. Biochemistry 1995;34:11528-36.10.1021/bi00036a0287547883Search in Google Scholar

Wong L, Radić Z, Brüggeman RJM, Hosea N, Berman HA, Taylor P. Mechanism of oxime reactivation of acetylcholinesterase analyzed by chirality and mutagnesis. Biochemistry 2000;39:5750-7.10.1021/bi992906r10801325Search in Google Scholar

Kovarik Z, Radić Z, Berman HA, Simeon-Rudolf V, Reiner E, Taylor P. Mutant cholinesterases possessing enhanced capacity for reactivation of their phosphonylated conjugates. Biochemistry 2004;43:3222-9.10.1021/bi036191a15023072Search in Google Scholar

Kovarik Z, Radić Z, Berman HA, Simeon-Rudolf V, Reiner E, Taylor P. Acetylcholinestrerase active center and gorge conformations analysed by combinatorial mutations and enantiomeric phosphonates. Biochem J 2003;373:33-40.10.1042/bj20021862Search in Google Scholar

Wang L, Jackson WC, Steinbach PA, Tsien RY. Evolution of new non-antibody proteins via iterative somatic hypermutation. Proc Natl Acad Sci USA 2004;101:16745-9.10.1073/pnas.040775210152941715556995Search in Google Scholar

Shi J, Radić Z, Taylor P. Inhibitors of different structure induce distinguishing conformations in the omega loop, Cys69-Cys96, of mouse acetylcholinesterase. J Biol Chem 2002;277:43301-8.10.1074/jbc.M20439120012196517Search in Google Scholar

Shi J, Tai K, McCammon JA, Taylor P, Johnson DA. Nanosecond dynamics of mouse acetylcholinesterase Cys69-Cys96 omega loop. J Biol Chem 2003;278:30905-11.10.1074/jbc.M30373020012759360Search in Google Scholar

ISSN:
0004-1254
Idiomas:
Inglés, Slovenian
Calendario de la edición:
4 veces al año
Temas de la revista:
Medicine, Basic Medical Science, other