Acceso abierto

Simple method of copper analysis using monosodium glutamate and its application in ore analysis

   | 28 may 2013

Cite

Al-Sibaai, A. A., & Fogg, A. G. (1973). Stability of dilute standard solutions of antimony, arsenic, iron and rhenium used in colorimetry. Analyst, 98, 732-738 DOI: 10.1039/AN9739800732.10.1039/an9739800732Search in Google Scholar

Bastug, A. S., Goz, S. E., Talman, Y., Gokturk, S., Asil, E., & Caliskan, E. (2011). Formation constants and coordination thermodynamics for binary complexes of Cu(II) and some α-amino acids in aqueous solution. Journal of Coordination Chemistry, 64(2), 281-292. DOI: 10.1080/00958972.2010.541454.10.1080/00958972.2010.541454Search in Google Scholar

Butler, E. J., & Forbes, D. H. S. (1965). A comparison of three absorptiometric methods for the determination of copper in biological materials. Analytica Chimica Acta, 33, 59-66. DOI: 10.1016/S0003-2670(01)84854-6.10.1016/S0003-2670(01)84854-6Search in Google Scholar

Castro, B., Lima, J. L. F. C., & Reis, S. (1995). Potentiometric determination of formation constants of copper(II)/bile acid/peptide in aqueous solute. Journal of Pharmaceutical and Biomedical Analysis, 13(4/5) 465-470.Search in Google Scholar

Ghasemi, J., Ahmadi, Sh., & Torkestani, K. (2003). Simultaneous determination of copper, nickel, cobalt and zinc using zincon as a metallochromic indicator with partial least squares. Analytica Chimica Acta, 487(2), 181-188. DOI: 10.1016/S0003-2670(03)00556-7.10.1016/S0003-2670(03)00556-7Search in Google Scholar

Hamada, Y. Z., Holyfield, H., Rosli, K., & Burkey, T. (2009). Equilibrium models of Cr3+ and Cu2+ with glutamate. Journal of Coordination Chemistry, 62(5), 721-733. DOI: 10.1080/00958970802353660.10.1080/00958970802353660Search in Google Scholar

Hoste, J., Eeckhout, J., & Gillis, J. (1953). Spectrophotometric determination of copper with cuproine. AnalyticaChimica Acta, 9, 263-274.10.1016/S0003-2670(01)80768-6Search in Google Scholar

Irving, H. M., & Tomlinson, W. R. (1968). Effect of chromium(III) and of other ions on the absorptiometric determination of copper with 2, 2'-biquinolyl. Talanta, 15(11), 1267-1279. DOI: org/10.1016/0039-9140(68)80049-9.10.1016/0039-9140(68)80049-9Search in Google Scholar

Jacobsen, E., Langmyhr, F. J., & Selmer-Olsen, A. R. (1961). On the use of bis-cyclohexanone-oxalyldihydrazone and bis-acetaldehyde-oxalyldihydrazone in the analysis of copper. Analytica Chimica Acta, 24, 579-588. DOI: 10.1016/0003-2670(61)80120-7.10.1016/0003-2670(61)80120-7Search in Google Scholar

Kállay, C., Várnagy, K., Micera, G., Sanna, D., & Sóvágó, I. (2005). Copper (II) complexes of oligopeptides containing aspartyl and glutamyl residues. Potentiometric and spectroscopic studies. Journal of Inorganic Biochemistry, 99(7), 1514-1525. DOI: 10.1016/j.jinorgbio.2005.04.009.10.1016/j.jinorgbio.2005.04.00915927267Search in Google Scholar

Kumar, B., Singh, H. B., Katyal, M., & Sharma, R. L. (1991). Spectrophotometric and derivative spectrophotometric determination of copper (II) with dithizone in aqueous phase. Microchimica Acta, 105(1-3), 79-87.10.1007/BF01245203Search in Google Scholar

Larsen, E. R., (1974). Spectrophotometric determination of copper in fertilizer with neocuproine. AnalyticalChemistry, 46(8), 1131-1132. DOI: 10.1021/ac60344a047.10.1021/ac60344a047Search in Google Scholar

Laznicka, P. (2006). Giant metallic deposit: Future Sources of Industrial Metals. Berlin: Springer Verlag.Search in Google Scholar

Marczenko, Z., & Balcerzak, M. (2000). Separation, Preconcentration and Spectrophotometry in InorganicAnalysis. Amsterdam: Elsevier.Search in Google Scholar

Moon, C. J., Whateley, M. K. G., & Evans, A. M. (2006). Introduction to Mineral Exploration (2 ed.). Blackwell Publishing.Search in Google Scholar

Ninomiya, K., (1998). Natural occurrence. Food Reviews International, 14(2-3), 177-211.10.1080/87559129809541157Search in Google Scholar

Peterson, R. E., & Bollier, M. E. (1955). Spectrophotometric determination of serum copper with biscyclohexanone oxalydishydrasone. Analytical Chemistry, 27, 1195-1197.10.1021/ac60103a054Search in Google Scholar

Ravnik, V., Dermelj, M., & Kosta, L. (1974). A highly selective diethyldithiocarbamate extraction system in activation analysis of copper, indium, manganese and zinc, Application to the analysis of standard reference materials. Journal of Radioanalytical and Nuclear Chemistry, 20(2), 443-453. 146 Sabel, C. E., Neureuther, J. M., & Siemann, S. (2010). A spectrophotometric method for the determination of zinc, copper, and cobalt ions in metalloproteins using Zincon. Analytical Biochemistry, 397, 218-226. DOI: 10.1016/j.ab.2009.10.037.10.1016/j.ab.2009.10.037Search in Google Scholar

San Andres, M. P., Marina, M. L., & Vera, S. (1994). Spectrophotometric determination of copper(II), nickel(II) and cobalt(II) as complexes with sodium diethyldithiocarbamate in cationic micellar medium of exadecyltrimethylammonium salts. Talanta, 41(2), 179-185. DOI: 10.1016/0039-9140(94)80105-3.10.1016/0039-9140(94)80105-3Search in Google Scholar

Shah, S. M., & Paul, J. (1972). Simultaneous determination of copper and manganese with sodium diethyl dithiocarbamate. Microchemical Journal, 17(1), 119-124. DOI: 10.1016/0026-265X(72)90046-X.10.1016/0026-265X(72)90046-XSearch in Google Scholar

Stoner, R. E., & Dasler, W. (1964). Spectrophotometric Determination of Microgram Quantities of Copper in Biologic Materials; Clinical Chemistry, 10, 845-852.10.1093/clinchem/10.9.845Search in Google Scholar

Thakur, M., & Deb, M. K. (1999). The use of 1-[pyridyl-(2)-azo]-naphthol-(2) in the presence of TX-100 and N,N%-diphenylbenzamidine for the spectrophotometric determination of copper in real samples. Talanta,49(3), 561-569.10.1016/S0039-9140(99)00054-5Search in Google Scholar

eISSN:
1899-8526
ISSN:
1899-8291
Idioma:
Inglés
Calendario de la edición:
Volume Open
Temas de la revista:
Geosciences, Geophysics, other