This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
DE BRUIJN, N. G.: On the number of positive integers ≤ x and free prime factors >y. II. Nederl. Akad. Wetensch. Proc. Ser. A 69. Indag. Math. 28 (1966) 239–247.Search in Google Scholar
HARMAN, G.: Prime-detecting Sieves. London Mathematical Society Monographs Series, Vol. 33. Princeton University Press, Princeton, NJ, 2007.Search in Google Scholar
IWANIEC, H.—KOWALSKI, E.: Analytic Number Theory. American Mathematical Society Colloquium Publications, Vol. 53. American Mathematical Society, Providence, RI, 2004.Search in Google Scholar
KUIPERS, L.—NIEDERREITER, H.: Uniform Distribution of Sequences.In: Pure and Appl. Math. Wiley-Interscience, New York-London-Sydney, 1974.Search in Google Scholar
MONTGOMERY, H. L. — VAUGHAN, R. C.: Multiplicative Number Theory I : Classical Theory. Cambridge Studies in Advanced Mathematics 97, Camebridge University Press, 2007.Search in Google Scholar
OEIS FOUNDATION INC. (2023):, The On-Line Encyclopedia of Integer Sequences. 2023 Published electronically at: http://oeis.orgSearch in Google Scholar
POLYMATH, D. H. J.: New equidistribution estimates of Zhang type, Algebra Number Theory 8 (2014), no. 9, 2067–2199.Search in Google Scholar
POMERANCE, C.—WEINGARTNER, A.: On primes and practical numbers, Ramanujan J. 57 (2022), no. 3, 981–1000.Search in Google Scholar
STEF, A.—TENENBAUM, G.: Entiers lexicographiques, Ramanujan J. 2 (1998), no. 1–2, 167–184.Search in Google Scholar
VAUGHAN, R. C.: On the distribution of αp modulo 1,Mathematika 24 (1977), no. 2, 135–141.Search in Google Scholar
VINOGRADOV, I. M.: The Method of Trigonometrical Sums in the Theory of Numbers. (Translated from Russian, revised and annotated by K. F. Roth and Anne Davenport), Interscience Publishers, London and New York, 1954.Search in Google Scholar
WEINGARTNER, A.: A sieve problem and its application,Mathematika 63 (2017), no. 1, 213–229.Search in Google Scholar
WEINGARTNER, A.: An extension of the Siegel-Walfisz theorem, Proc. Amer. Math. Soc. 149 (2021), no. 11, 4699–4708.Search in Google Scholar
WEINGARTNER, A.: The mean number of divisors for rough, dense and practical numbers, to appear in Int. J. Number Theory, arXiv:2104.07137 [math.NT] https://doi.org/10.48550/arXiv.2104.07137Search in Google Scholar
WEISSTEIN, E. W.: Irrationality Measure, From MathWorld—A Wolfram Web Resource; https://mathworld.wolfram.com/IrrationalityMeasure.htmlSearch in Google Scholar