Acceso abierto

Products of Integers with Few Nonzero Digits

 y   
31 may 2022

Cite
Descargar portada

Let s(n) be the number of nonzero bits in the binary digital expansion of the integer n. We study, for fixed k, ℓ, m, the Diophantine system

s(ab)= k, s(a)= ℓ, and s(b)= m

in odd integer variables a, b.When k =2 or k = 3, we establish a bound on ab in terms of and m. While such a bound does not exist in the case of k =4, we give an upper bound for min{a, b} in terms of and m.