1. bookVolumen 23 (2022): Edición 4 (November 2022)
Detalles de la revista
License
Formato
Revista
eISSN
1407-6179
Primera edición
20 Mar 2000
Calendario de la edición
4 veces al año
Idiomas
Inglés
Acceso abierto

Risk Assessment of the Operation of Aviation Maintenance Personnel Trained on Virtual Reality Simulators

Publicado en línea: 16 Nov 2022
Volumen & Edición: Volumen 23 (2022) - Edición 4 (November 2022)
Páginas: 320 - 333
Detalles de la revista
License
Formato
Revista
eISSN
1407-6179
Primera edición
20 Mar 2000
Calendario de la edición
4 veces al año
Idiomas
Inglés

1. Velev, D., Zlateva, P.V. (2017) Virtual reality challenges in education and training. Int. J. Learn. Teach., 3, 33-37. [DOI: https://dx.doi.org/10.18178/ijlt.3.1.33-37]10.18178/ijlt.3.1.33-37 Search in Google Scholar

2. Muñoz, J.E., Quintero, L., Stephens, C.L., Pope, A.T. (2020) A psychophysiological model of firearms training in police officers: A virtual reality experiment for biocybernetic adaptation. Front. Psychol., 11, 683. [DOI: https://dx.doi.org/10.3389/fpsyg.2020.00683] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32373026]10.3389/fpsyg.2020.00683717975732373026 Search in Google Scholar

3. Nedel, L., de Souza, V.C., Menin, A., Sebben, L., Oliveira, J., Faria, F., Maciel, A. (2016) Using immersive virtual reality to reduce work accidents in developing countries. IEEE Comput. Graph. Appl., 36, 36-46. [DOI: https://dx.doi.org/10.1109/MCG.2016.19]10.1109/MCG.2016.1926915116 Search in Google Scholar

4. Cabral, M., Belloc, O., Montes, A., Borba, E.Z., Zuffo, M.K. (2016) VR THOR–virtual reality training with hotstick on operations risks. In: Proceedings of the 2016 IEEE Virtual Reality (VR) Conference, Greenville, SC, USA, 19–23 March 2016, [DOI: https://dx.doi.org/10.1109/VR.2016.7504786] Search in Google Scholar

5. Hament, B., Carter, A., Oh, P.Y. (2017) Coupling virtual reality and motion platforms for snowboard training. In: Proceedings of the 2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), 556-560. Jeju, Korea, 28 June–1 July 2017, [DOI: https://dx.doi.org/10.1109/URAI.2017.7992668]10.1109/URAI.2017.7992668 Search in Google Scholar

6. Carruth, D.W. (2017) Virtual reality for education and workforce training. In: Proceedings of the 15th International Conference on Emerging eLearning Technologies and Applications (ICETA), 556-560. Stary Smokovec, Slovakia, 26–27 October 2017, [DOI: https://dx.doi.org/10.1109/ICETA.2017.8102472]10.1109/ICETA.2017.8102472 Search in Google Scholar

7. Engelbrecht, H., Lindeman, R.W., Hoermann, S. (2019) A SWOT analysis of the field of virtual reality for firefighter training. Front. Robot. AI, 6, 1-14. [DOI: https://dx.doi.org/10.3389/frobt.2019.00101] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33501116]10.3389/frobt.2019.00101780589733501116 Search in Google Scholar

8. Smith, J.W., Salmon, J.L. (2017) Development and analysis of virtual reality technician-training platform and methods. In: Proceedings of the Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC), 6, 1-12. Orlando, FL, USA, 27 November–1 December 2017. Search in Google Scholar

9. Koutitas, G., Smith, S., Lawrence, G. (2021) Performance evaluation of AR/VR training technologies for EMS first responders. Virtual Real., 25, 83-94. [DOI: https://dx.doi.org/10.1007/s10055-020-00436-8]10.1007/s10055-020-00436-8 Search in Google Scholar

10. Li, W., Zhu, J., Fu, L., Zhu, Q., Xie, Y., Hu, Y. (2020) An augmented representation method of debris flow scenes to improve public perception. Int. J. Geogr. Inf. Sci., 35, 1521-1544. [DOI: https://dx.doi.org/10.1080/13658816.2020.1833016]10.1080/13658816.2020.1833016 Search in Google Scholar

11. Mitsuhara, H., Tanimura, C., Nemoto, J., Shishibori, M. (2019) Failure-enhanced evacuation training using a VR-based disaster simulator: A comparative experiment with simulated evacuees. Procedia Comput. Sci., 159, 1670-1679. [DOI: https://dx.doi.org/10.1016/j.procs.2019.09.337]10.1016/j.procs.2019.09.337 Search in Google Scholar

12. Sungjin, A., Taehui, K., Young-Jun, P., Ji-Myong, K. (2020) Improving Effectiveness of Safety Training at Construction Worksite Using 3D BIM Simulation. Adv. Civ. Eng., 2020, 2473138. Search in Google Scholar

13. Chittaro, L., Buttussi, F. (2015) Assessing knowledge retention of an immersive serious game vs. a traditional education method in aviation safety. IEEE Trans. Vis. Comput. Graph., 21, 529-538. [DOI: https://dx.doi.org/10.1109/TVCG.2015.2391853]10.1109/TVCG.2015.239185326357103 Search in Google Scholar

14. Dang, P., Zhu, J., Pirasteh, S., Li, W., You, J., Xu, B., Liang, C. (2021) A chain navigation grid based on cellular automata for large-scale crowd evacuation in virtual reality. Int. J. Appl. Earth Obs. Geoinf., 103, 102507. [DOI: https://dx.doi.org/10.1016/j.jag.2021.102507]10.1016/j.jag.2021.102507 Search in Google Scholar

15. Xu, J., Tang, Z., Yuan, X., Nie, Y., Ma, Z., Wei, X., Zhang, J.J. (2018) A VR-based the emergency rescue training system of railway accident. Entertain. Comput., 27, 23-31. [DOI: https://dx.doi.org/10.1016/j.entcom.2018.03.002]10.1016/j.entcom.2018.03.002 Search in Google Scholar

16. Myunghwan, P., Sangsoo, L., Seok, J.K., Hyeonju, S. (2019) A study on the development direction of education and training system based on AR/VR technology. J. KIMST, 22, 545-554. Search in Google Scholar

17. Bourhim, M., Cherkaoui, A. (2020) Efficacy of Virtual Reality for Studying People’s Pre-evacuation Behavior under Fire. Int. J. Hum. Comput. Stud., 142, 102484. [DOI: https://dx.doi.org/10.1016/j.ijhcs.2020.102484]10.1016/j.ijhcs.2020.102484 Search in Google Scholar

18. Kavakli, M. (2006) Training simulations for crime risk assessment. In: Proceedings of the 7th International Conference on Information Technology Based Higher Education and Training, 203-210. Ultimo, Australia, 10–13 July 2006.10.1109/ITHET.2006.339765 Search in Google Scholar

19. Zhu, Y., Li, N. (2021) Virtual and augmented reality technologies for emergency management in the built environments: A state-of-the-art review. J. Saf. Sci. Resil., 2, 1-10. [DOI: https://dx.doi.org/10.1016/j.jnlssr.2020.11.004]10.1016/j.jnlssr.2020.11.004 Search in Google Scholar

20. Garcia, J.A. (2019) A Virtual Reality Game-like Tool for Assessing the Risk of Falling in the Elderly. Stud. Health Technol. Inform., 266, 63-69. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31397303] Search in Google Scholar

21. Kwegyir-Afful, E. (2022) Effects of an engaging maintenance task on fire evacuation delays and presence in virtual reality. Int. J. Disaster Risk Reduct., 67, 102681. [DOI: https://dx.doi.org/10.1016/j.ijdrr.2021.102681]10.1016/j.ijdrr.2021.102681 Search in Google Scholar

22. Simić, N., Stefanović, M., Petrović, G., Stanković, A. (2021) Use of the risk analysis approach in theserbian army integration process against COVID-19. Oper. Res. Eng. Sci. Theory Appl., 4, 67-81. [DOI: https://dx.doi.org/10.31181/oresta2040127s]10.31181/oresta2040127s Search in Google Scholar

23. Kovačevića, N., Stojiljković, A., Kovač, M. (2019) Application of the matrix approach in risk assessment. Oper. Res. Eng. Sci. Theory Appl., 2, 55-64. [DOI: https://dx.doi.org/10.31181/oresta1903055k]10.31181/oresta1903055k Search in Google Scholar

24. Goyal, A., Sciammarella, J.C., Cusick, A.S., Patel, P.H. (2022) Cardiopulmonary Resuscitation. Available online: https://www.ncbi.nlm.nih.gov/books/NBK470402/ (accessed on 30 April 2022). Search in Google Scholar

25. Fejdyś, M., Wlazeł, S., Kusiak, E., Kaczmarek, K., Nepelski, M., Lubiewski, P., Kuczyńska, E., Jakubczyk, R., Kamiński, G., Foryś, Ł., & Petniunas, M. (2022) Mathematical algorithm for risk assessment of police officer in VR training simulation. Applied Sciences, 12(4), 2169. http://dx.doi.org/10.3390/app1204216910.3390/app12042169 Search in Google Scholar

26. Pirmanov, I., Ainakulov, Z., Astapenko, N., Koshekov, K., Fedorov, I. (2022) Hardware-software Complex of Interactive Training Programs on Aircraft Repair Processes Based on 3D and VR. Journal of Theoretical and Applied Information Technology. 100(4), 1148–1157. http://www.jatit.org/volumes/Vol100No4/22Vol100No4.pdf Search in Google Scholar

27. Astapenko, N., Koshekov, K., Ponomarev, G., Seidakhmetov, B., Fedorov, I., Zuev, D. (2021) Devising an automated method to form the content of educational specialization disciplines of maximum utility for implementation in the professional field. Eastern-European Journal of Enterprise Technologies, 4 (4(112)), 64–73. doi: https://doi.org/10.15587/1729-4061.2021.23887410.15587/1729-4061.2021.238874 Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo