1. bookVolumen 23 (2022): Edición 1 (February 2022)
Detalles de la revista
Primera edición
20 Mar 2000
Calendario de la edición
4 veces al año
Acceso abierto

Ammonia as Clean Shipping Fuel for the Baltic Sea Region

Publicado en línea: 18 Feb 2022
Volumen & Edición: Volumen 23 (2022) - Edición 1 (February 2022)
Páginas: 102 - 112
Detalles de la revista
Primera edición
20 Mar 2000
Calendario de la edición
4 veces al año

1. Ahlgren, J. (2019) Circular Baltic 2030. Circular Economy in the Baltic Sea Region and Beyond; Global Utmaning: Stockholm, Sweden. Search in Google Scholar

2. Al-Aboosi, F. Y., El-Halwagi, M. M., Moore, M., & Nielsen, R. B. (2021) Renewable ammonia as an alternative fuel for the shipping industry. Current Opinion in Chemical Engineering, 31, 100670.10.1016/j.coche.2021.100670 Search in Google Scholar

3. Al-Douri, A., Alsuhaibani, A. S., Moore, M., Nielsen, R. B., El-Baz, A. A., & El-Halwagi, M. M. (2021) Greenhouse gases emissions in liquified natural gas as a marine fuel: Life cycle analysis and reduction potential. The Canadian Journal of Chemical Engineering.10.1002/cjce.24268 Search in Google Scholar

4. Al-Enazi, A., Okonkwo, E. C., Bicer, Y., & Al-Ansari, T. (2021) A review of cleaner alternative fuels for maritime transportation. Energy Reports, 7, 1962-1985.10.1016/j.egyr.2021.03.036 Search in Google Scholar

5. Altrichter, H., Feldman, A., Posch, P.; Somekh, B. (2008) Teachers investigate their work; An introduction to action research across the professions. Routledge, 2nd ed., p. 147. Search in Google Scholar

6. Ampah, J. D., Yusuf, A. A., Afrane, S., Jin, C., & Liu, H. (2021) Reviewing two decades of cleaner alternative marine fuels: Towards IMO’s decarbonization of the maritime transport sector. Journal of Cleaner Production, 128871.10.1016/j.jclepro.2021.128871 Search in Google Scholar

7. Andersson, K., Brynolf, S., Hansson, J., & Grahn, M. (2020) Criteria and decision support for a sustainable choice of alternative marine fuels. Sustainability, 12(9), 3623.10.3390/su12093623 Search in Google Scholar

8. Bach, H., Mäkitie, T., Hansen, T., & Steen, M. (2021) Blending new and old in sustainability transitions: Technological alignment between fossil fuels and biofuels in Norwegian coastal shipping. Energy Research & Social Science, 74, 101957.10.1016/j.erss.2021.101957 Search in Google Scholar

9. Balcombe, P., Brierley, J., Lewis, C., Skatvedt, L., Speirs, J., Hawkes, A., & Staffell, I. (2019) How to decarbonise international shipping: Options for fuels, technologies and policies. Energy conversion and management, 182, 72-88.10.1016/j.enconman.2018.12.080 Search in Google Scholar

10. Ben Brahim, T., Wiese, F., & Münster, M. (2019) Pathways to climate-neutral shipping: A Danish case study. Energy, 188, 116009.10.1016/j.energy.2019.116009 Search in Google Scholar

11. Bengtsson, S., Andersson, K., & Fridell, E. (2011) A comparative life cycle assessment of marine fuels: liquefied natural gas and three other fossil fuels. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 225(2), 97-110.10.1177/1475090211402136 Search in Google Scholar

12. Beyersdorff, S.; Lanthen. (2018) E. Baltic 2030: Bumps on the Road. How the Baltic Sea States are performing on the SDGs; Nordic Council of Ministers and Council of the Baltic Sea States: Copenhagen, Denmark.10.6027/ANP2018-783 Search in Google Scholar

13. Bilgili, L. (2021) Comparative assessment of alternative marine fuels in life cycle perspective. Renewable and Sustainable Energy Reviews, 144, 110985.10.1016/j.rser.2021.110985 Search in Google Scholar

14. Black & Veatch (2020) Hybrid LNG & Ammonia Infrastructure: Key to a Green Economy. Search in Google Scholar

15. Böhme, K.; Zillmer, S.; Hans, S.; Antikainen, J.; Pyykkonen, S. (2016) Looking Towards 2030: Preparing the Baltic Sea Region for the Future. Full Report; European Commission: Brussels, Belgium. Search in Google Scholar

16. Carvalho, F., Portugal-Pereira, J., Junginger, M., & Szklo, A. (2021) Biofuels for Maritime Transportation: A Spatial, Techno-Economic, and Logistic Analysis in Brazil, Europe, South Africa, and the USA. Energies, 14(16), 4980.10.3390/en14164980 Search in Google Scholar

17. Cheliotis, M., Boulougouris, E., Trivyza, N. L., Theotokatos, G., Livanos, G., Mantalos, G., & Venetsanos, A. (2021) Review on the safe use of ammonia fuel cells in the maritime industry. Energies, 14(11), 3023.10.3390/en14113023 Search in Google Scholar

18. DNV-GL (2020). Ammonia as Marine Fuel, White Paper 2020, Norway. Search in Google Scholar

19. Erdemir, D., & Dincer, I. (2021) A perspective on the use of ammonia as a clean fuel: Challenges and solutions. International Journal of Energy Research, 45(4), 4827-4834.10.1002/er.6232 Search in Google Scholar

20. Erisman, J. W., Otjes, R., Hensen, A., Jongejan, P., van den Bulk, P., Khlystov, A., ... & Slanina, S. (2001) Instrument development and application in studies and monitoring of ambient ammonia. Atmospheric Environment, 35(11), 1913-1922.10.1016/S1352-2310(00)00544-6 Search in Google Scholar

21. Gerlitz, L.; Philipp, R.; Beifert, A. (2018) Smart and Sustainable Cross-Sectoral Stakeholder Integration into Macro-Regional LNG Value Chain. Springer Lecture Notes in Networks and Systems 36, 112−126, DOI: 10.1007/978-3-319-74454-4_11.10.1007/978-3-319-74454-4_11 Search in Google Scholar

22. Giddey, S., Badwal, S. P. S., Munnings, C., & Dolan, M. (2017) Ammonia as a renewable energy transportation media. ACS Sustainable Chemistry & Engineering, 5(11), 10231-10239.10.1021/acssuschemeng.7b02219 Search in Google Scholar

23. Gu, Y., & Wallace, S. W. (2017) Scrubber: A potentially overestimated compliance method for the Emission Control Areas: The importance of involving a ship’s sailing pattern in the evaluation. Transportation Research Part D: Transport and Environment, 55, 51-66.10.1016/j.trd.2017.06.024 Search in Google Scholar

24. Hansson, J., Brynolf, S., Fridell, E., & Lehtveer, M. (2020) The potential role of ammonia as marine fuel—Based on energy systems modelling and multi-criteria decision analysis. Sustainability, 12(8), 3265. Search in Google Scholar

25. Haskell, C. (2021) Decarbonising shipping – could ammonia be the fuel of the future? Lloyd’s Register, retrieved at https://www.lr.org/en/insights/articles/decarbonising-shipping-ammonia/ on 10th September 2021. Search in Google Scholar

26. Johansson L. & Jalkanen J. P. (2016) Emissions from Baltic Sea shipping in 2015, Baltic Sea Environment Fact Sheet 2015, HELCOM, Helsinki. Search in Google Scholar

27. Kim, K.; Roh, G.; Kim, W.; Chun, K. (2020) A Preliminary Study on an Alternative Ship Propulsion System Fuelled by Ammonia: Environmental and Economic Assessments. Journal of Marine Science Engineering, 8, 183; doi:10.3390/jmse8030183.10.3390/jmse8030183 Search in Google Scholar

28. Klerke, A., Christensen, C. H., Nørskov, J. K., & Vegge, T. (2008) Ammonia for hydrogen storage: challenges and opportunities. Journal of Materials Chemistry, 18(20), 2304-2310.10.1039/b720020j Search in Google Scholar

29. Korberg, A. D., Brynolf, S., Grahn, M., & Skov, I. R. (2021) Techno-economic assessment of advanced fuels and propulsion systems in future fossil-free ships. Renewable and Sustainable Energy Reviews, 142, 110861.10.1016/j.rser.2021.110861 Search in Google Scholar

30. Kurien, C., & Mittal, M. (2022) Review on the production and utilization of green ammonia as an alternate fuel in dual-fuel compression ignition engines. Energy Conversion and Management, 251, 114990.10.1016/j.enconman.2021.114990 Search in Google Scholar

31. Lloyd’s Register. (2020) UMAS Techno-Economic Assessment of Zero-Carbon Fuels; Lloyds Register: London, UK. Search in Google Scholar

32. MacFarlane, D. R., Cherepanov, P. V., Choi, J., Suryanto, B. H., Hodgetts, R. Y., Bakker, J. M., ... & Simonov, A. N. (2020) A roadmap to the ammonia economy. Joule, 4(6), 1186-1205.10.1016/j.joule.2020.04.004 Search in Google Scholar

33. Mildenstrey, E. (2021) Ammonia as fuel for the shipping industry, Master Thesis, Wismar University of Applied Sciences, Wismar, Germany. Search in Google Scholar

34. Olaniyi, E. O. Gerlitz, L (2019) LNG Maritime energy contracting model. Journal of Entrepreneurship and Sustainability Issues, 7(1), 574−594.10.9770/jesi.2019.7.1(40).10.9770/jesi.2019.7.1(40) Search in Google Scholar

35. Olaniyi, E. O; Prause, G (2020) A Comparative Study on SECA Compliance Options for Maritime Fuel Producers. Journal of Entrepreneurship and Innovation in Emerging Economies. DOI: 10.1177/2393957519885521.10.1177/2393957519885521 Search in Google Scholar

36. Palys, M. J., Wang, H., Zhang, Q., & Daoutidis, P. (2021) Renewable ammonia for sustainable energy and agriculture: vision and systems engineering opportunities. Current Opinion in Chemical Engineering, 31, 100667.10.1016/j.coche.2020.100667 Search in Google Scholar

37. Prause, F; Prause, G. (2021) Inventory Routing Analysis for Maritime LNG Supply of German Ports, Transport and Telecommunication Journal, 22(1), 67-86. DOI: 10.2478/ttj-2021-0006.10.2478/ttj-2021-0006 Search in Google Scholar

38. Prause, G.; Olaniyi, E. O. (2019) A compliance cost analysis of the seca regulation in the Baltic Sea. Journal of Entrepreneurship and Sustainability Issues, 6(4), 1907−1921. DOI: 10.9770/jesi.2019.6.4(26).10.9770/jesi.2019.6.4(26) Search in Google Scholar

39. Prussi, M., Scarlat, N., Acciaro, M., & Kosmas, V. (2021) Potential and limiting factors in the use of alternative fuels in the European maritime sector. Journal of Cleaner Production, 291, 125849.10.1016/j.jclepro.2021.125849794457433814732 Search in Google Scholar

40. Rehbein, M. C., Meier, C., Eilts, P., & Scholl, S. (2019) Mixtures of ammonia and organic solvents as alternative fuel for internal combustion engines. Energy & Fuels, 33(10), 10331-10342.10.1021/acs.energyfuels.9b01450 Search in Google Scholar

41. Reiter, A. J., & Kong, S. C. (2008) Demonstration of compression-ignition engine combustion using ammonia in reducing greenhouse gas emissions. Energy & Fuels, 22(5), 2963-2971.10.1021/ef800140f Search in Google Scholar

42. Sánchez, A., Castellano, E., Martín, M., & Vega, P. (2021) Evaluating ammonia as green fuel for power generation: A thermo-chemical perspective. Applied Energy, 293, 116956.10.1016/j.apenergy.2021.116956 Search in Google Scholar

43. Seo, S., Chu, B., Noh, Y., Jang, W., Lee, S., Seo, Y., & Chang, D. (2016) An economic evaluation of operating expenditures for LNG fuel gas supply systems onboard ocean-going ships considering availability. Ships and Offshore Structures, 11(2), 213-223.10.1080/17445302.2014.984389 Search in Google Scholar

44. Stalmokaitė, I., & Yliskylä-Peuralahti, J. (2019) Sustainability transitions in Baltic Sea shipping: exploring the responses of firms to regulatory changes. Sustainability, 11(7), 1916.10.3390/su11071916 Search in Google Scholar

45. Sys, C., Vanelslander, T., Adriaenssens, M., & Van Rillaer, I. (2016) International emission regulation in sea transport: Economic feasibility and impact. Transportation Research Part D: Transport and Environment, 45, 139-151.10.1016/j.trd.2015.06.009 Search in Google Scholar

46. Topsoe (2020) Ammonia – an industrial view of ammonia as a marine fuel; Alfa Laval, Hafnia, Haldor Topsoe, Vestas, and Siemens Gamesa; Denmark. Search in Google Scholar

47. Valera-Medina, A., Amer-Hatem, F., Azad, A. K., Dedoussi, I. C., De Joannon, M., Fernandes, R. X., ... & Costa, M. (2021) Review on ammonia as a potential fuel: from synthesis to economics. Energy & Fuels, 35(9), 6964-7029.10.1021/acs.energyfuels.0c03685 Search in Google Scholar

48. Valera-Medina, A., Pugh, D. G., Marsh, P., Bulat, G., & Bowen, P. (2017) Preliminary study on lean premixed combustion of ammonia-hydrogen for swirling gas turbine combustors. International Journal of Hydrogen Energy, 42(38), 24495-24503.10.1016/j.ijhydene.2017.08.028 Search in Google Scholar

49. van Aardenne, J., Colette, A., Degraeuwe, B., Hammingh, P., Viana, M., and Vlieger, I. (2013) The impact of international shipping on European air quality and climate forcing, Technical Report No. 4/2013, EEA (European Environment Agency), Copenhagen, Denmark, 1–84, 2013. Search in Google Scholar

50. Vedachalam, S., Baquerizo, N., & Dalai, A. K. (2022) Review on impacts of low sulfur regulations on marine fuels and compliance options. Fuel, 310, 122243.10.1016/j.fuel.2021.122243 Search in Google Scholar

51. Wan, Z., Tao, Y., Shao, J., Zhang, Y., & You, H. (2021) Ammonia as an effective hydrogen carrier and a clean fuel for solid oxide fuel cells. Energy Conversion and Management, 228, 113729.10.1016/j.enconman.2020.113729 Search in Google Scholar

52. Xing, H., Spence, S., & Chen, H. (2020) A comprehensive review on countermeasures for CO2 emissions from ships. Renewable and Sustainable Energy Reviews, 134, 110222.10.1016/j.rser.2020.110222 Search in Google Scholar

53. Zamfirescu, C., & Dincer, I. (2008) Using ammonia as a sustainable fuel. Journal of Power Sources, 185(1), 459-465.10.1016/j.jpowsour.2008.02.097 Search in Google Scholar

54. Zis, T. P., & Cullinane, K. (2020) The desulphurisation of shipping: Past, present and the future under a global cap. Transportation Research Part D: Transport and Environment, 82, 102316. Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo