1. bookVolumen 22 (2021): Edición 4 (November 2021)
Detalles de la revista
License
Formato
Revista
eISSN
1407-6179
Primera edición
20 Mar 2000
Calendario de la edición
4 veces al año
Idiomas
Inglés
access type Acceso abierto

Object and Lane Detection Technique for Autonomous Car Using Machine Learning Approach

Publicado en línea: 20 Nov 2021
Volumen & Edición: Volumen 22 (2021) - Edición 4 (November 2021)
Páginas: 383 - 391
Detalles de la revista
License
Formato
Revista
eISSN
1407-6179
Primera edición
20 Mar 2000
Calendario de la edición
4 veces al año
Idiomas
Inglés
Abstract

The main objective of this work is to develop a perception algorithm for self-driving cars which is based on pure vision data or camera data. The work is divided into two major parts. In part one of the work, we develop a powerful and robust lane detection algorithm which can determine the safely drive-able region in front of the car. In part two we develop and end to end driving model based on CNNs to learn from the drivers driving data and can drive the car with only the camera data from on-board cameras. Performance of the proposed system is observed by the implementation of the autonomous car that can be able to detect and classify the stop signs and other vehicles.

Keywords

1. Audibert, H.K.Y. & Ponce, J. (2010) General road detection from a single image, IEEE Trans. Image Process. 19(8), 2211–2220, https://doi.org/10.1109/TIP.2010.2045715.10.1109/TIP.2010.204571520371404 Search in Google Scholar

2. Bellis, Elizabeth, & Jim. (2008) National motor vehicle crash causation survey (NMVCCS). (SAS analytical user’s manual. No. HS-811 053.) Search in Google Scholar

3. Bengler, K., Dietmayer, K., Farber, B., Maurer, M., Stiller, C., & Winner. H. (2014) Three Decades of Driver Assistance Systems: Review and Future Perspectives, IEEE Intelligent Transportation Systems Magazine, 6(4), 6–22. doi: 10.1109/MITS.2014.2336271.10.1109/MITS.2014.2336271 Search in Google Scholar

4. Bojarski, M., Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L., Monfort, M., Muller, U., Zhang, J., Zhang, X., Zhao, J., & Zieba, K. (2016) End to End Learning for Self-Driving Cars. ArXiv, abs/1604.07316. Search in Google Scholar

5. Borkar, A., Hayes, M., & Smith, M. (2012) A novel lane detection system with efficient ground truth generation, IEEE Trans. Intell. Transp. Syst. 13 (1), 365–374. https://doi.org/10.1109/TITS.2011.2173196.10.1109/TITS.2011.2173196 Search in Google Scholar

6. Eskandarian A. (2012) Fundamentals of Driver Assistance. In: Eskandarian A. (eds) Handbook of Intelligent Vehicles. Springer, London. https://doi.org/10.1007/978-0-85729-085-4_19.10.1007/978-0-85729-085-4_19 Search in Google Scholar

7. Gayko J.E. (2012). Lane Departure and Lane Keeping. In: Eskandarian A. (eds) Handbook of Intelligent Vehicles. Springer, London. https://doi.org/10.1007/978-0-85729-085-4_2610.1007/978-0-85729-085-4_26 Search in Google Scholar

8. He Mao & Mei Xie. (2012) Lane detection based on though transform and endpoints classification, International Conference on Wavelet Active Media Technology and Information Processing, Chengdu, China, 125-127. doi:10.1109/ICWAMTIP.2012. Search in Google Scholar

9. Kuk, G., An, H., Ki, H. & Cho, I. (2010) Fast lane detection and tracking based on hough transform with reduced memory requirement, 13th International IEEE Conference on Intelligent Transportation Systems. Funchal, Portugal, 1344–1349, https://doi.org/10.1109/ITSC.2010.562512110.1109/ITSC.2010.5625121 Search in Google Scholar

10. Kunz, N. Chase. (2017) Vision-Based Control of a Full-Size Car by Lane Detection. All Graduate Theses and Dissertations. 6534. Utah State University, United States. Search in Google Scholar

11. Liyong Wang, Peng Sun, Min Xie, Shaobo Ma, Boxiong Li, Yuchen Shi & Qinghua Su. (2020). Advanced Driver-Assistance System (ADAS) for Intelligent Transportation Based on the Recognition of Traffic Cones, Advances in Civil Engineering, 2020 (8883639), 8 pages. DOI.org/10.1155/2020/8883639. Search in Google Scholar

12. Lu, M., Wevers, K. & Heijden, R. V. D. (2005) Technical Feasibility of Advanced Driver Assistance Systems (ADAS) for Road Traffic Safety, Transportation Planning and Technology. 28(3), 167–187. https://doi.org/10.1080/03081060500120282.10.1080/03081060500120282 Search in Google Scholar

13. Muthalagu, R., Bolimera, A. & Kalaichelvi, V. (2021) Vehicle lane markings segmentation and keypoint determination using deep convolutional neural networks, Multimed Tools Appl. 80, 11201–11215. https://doi.org/10.1007/s11042-020-10248-2.10.1007/s11042-020-10248-2 Search in Google Scholar

14. Open-Source Autonomous Driving Dataset. (2017) https://github.com/udacity/self-driving-car-sim. Search in Google Scholar

15. Pan, X., Shi, J., Luo, P., Wang, X. & Tang, X. (2018) Spatial as deep: Spatial CNN for traffic scene understanding, arXiv preprint arXiv:1712.06080 Search in Google Scholar

16. Raja, M., Anudeepsekhar, B. & Kalaichelvi, V. (2020) Lane detection technique based on perspective transformation and histogram analysis for self-driving cars. Computers & Electrical Engineering, 85, 1-16. https://doi.org/10.1016/j.compeleceng.2020.106653.10.1016/j.compeleceng.2020.106653 Search in Google Scholar

17. Shaun, Fernandes, Dhruv, Duseja, & Muthalagu, R. (2021) Application of Image Processing Techniques for Autonomous Cars, Proceedings of Engineering and Technology Innovation, 17, 01-12. https://doi.org/10.46604/peti.2021.6074.10.46604/peti.2021.6074 Search in Google Scholar

18. Simon Sternlund, Johan Strandroth, Matteo Rizzi, Anders Lie & Claes Tingvall (2017) The effectiveness of lane departure warning systems – A reduction in real-world passenger car injury crashes, Traffic Injury Prevention, 18(2), 225-229. DOI: 10.1080/15389588.2016.1230672.10.1080/15389588.2016.123067227624313 Search in Google Scholar

19. Singh, S. (2015) Critical reasons for crashes investigated in the National Motor Vehicle Crash Causation Survey. (Traffic Safety Facts Crash•Stats. Report No. DOT HS 812 115). Washington, DC: National Highway Traffic Safety Administration. Search in Google Scholar

20. Tabelini, L., Berriel R., Paixão T.M., Badue C., Alberto. F De Souza. & Oliveira-Santos, T. (2020) PolyLaneNet: Lane estimation via deep polynomial regression, arXiv preprint arXiv:2004.10924 Search in Google Scholar

21. Talib, M.L., Rui X., Ghazali K.H., Mohd. Zainudin N. & Ramli S. (2013) Comparison of Edge Detection Technique for Lane Analysis by Improved Hough Transform, Advances in Visual Informatics (IVIC 2013). Selangor, Malaysia, November, 176-183. https://doi.org/10.1007/978-3-319-02958-0_17.10.1007/978-3-319-02958-0_17 Search in Google Scholar

22. Tusimple benchmark ground truth (2018), https://github.com/TuSimple/tusimple-benchmark/issues/3. Search in Google Scholar

23. Xing, Y. et al. (2018) Advances in Vision-Based Lane Detection: Algorithms, Integration, Assessment, and Perspectives on ACP-Based Parallel Vision, IEEE/CAA Journal of Automatica Sinica. 5(3), 645-661, doi: 10.1109/JAS.2018.7511063.10.1109/JAS.2018.7511063 Search in Google Scholar

24. Xu, H., Wang, X., Huang, H., Wu, K. & Fang, Q. (2009) A fast and stable lane detection method based on b-spline curve, IEEE 10th International Conference on Computer-Aided Industrial Design and Conceptual Design, Wenzhou, China, 1036–1040. https://doi.org/10.1109/CAIDCD.2009.5375392.10.1109/CAIDCD.2009.5375392 Search in Google Scholar

25. Yan, Xuqin and Yanqiang, Li. (2017) A method of lane edge detection based on Canny algorithm. 2017 Chinese Automation Congress (CAC), Jinan, China, 2120-2124.10.1109/CAC.2017.8243122 Search in Google Scholar

26. Zhao, Z.Q., Zheng, P., Xu, S.T. & Wu, X. (2018) Object detection with deep learning: A review, arXiv e-prints, arXiv:1807.05511. Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo