[1. Araujo de Lemos, R., Garcia, O., Ferreira, J.V. (2015) Local and Global Path Generation for Autonomous Vehicles Using Splines. In: Workshop on Engineering Applications - International Congress on Engineering (WEA), Bogota, October 2015. Colombia: IEEE, pp. 1–6.10.1109/WEA.2015.7370124]Search in Google Scholar
[2. Ayawli, B.B.K., Chellali, R., Appiah, A.Y., Kyeremeh, F. (2018) An Overview of Nature-Inspired, Conventional, and Hybrid Methods of Autonomous Vehicle Path Planning. Journal of Advanced Transportation, 1–27. DOI: 10.1155/2018/826969810.1155/2018/8269698]Abierto DOISearch in Google Scholar
[3. Chaari, I., Koubaa, A., Benaceur, H., Ammar, A., Alajlan, M., Youssef, H. (2017) Design and performance analysis of global path planning techniques for autonomous mobile robots in grid environments. International Journal of Advanced Robotic Systems, 14(2), 1–15.10.1177/1729881416663663]Search in Google Scholar
[4. Elhoseny, M., Tharwat, A., Hassanien, A.E. (2018) Bezier Curve Based Path Planning in a Dynamic Field using Modified Genetic Algorithm. Journal of Computational Science, 25, 339–350.10.1016/j.jocs.2017.08.004]Search in Google Scholar
[5. Gonzales, D., Perez, J., Milanes, V., Nashashibi, F. (2015) A Review of Motion Planning Techniques for Automated Vehicles. IEEE Transactions on Intelligent Transportation Systems, 17(4), 1135–1145. DOI: 10.1109/TITS.2015.249884110.1109/TITS.2015.2498841]Abierto DOISearch in Google Scholar
[6. Kikutis, R., Stankūnas, J., Rudinskas, D., Masiulionis, D. (2017) Adaptation of Dubins Paths for UAV Ground Obstacle Avoidance When Using a Low Cost On-Board GNSS Sensor. Sensors, 17(10), 1–23.10.3390/s17102223]Search in Google Scholar
[7. Lamini, C., Benhlima, S., Elbekri, A. (2018) Genetic Algorithm Based Approach for Autonomous Mobile Robot Path Planning. Procedia Computer Science, 127, 180–189. DOI: 10.1016/j.procs.2018.01.11310.1016/j.procs.2018.01.113]Abierto DOISearch in Google Scholar
[8. Lee, J.W., Lee, D.H, Lee, J.J. (2011) Global Path Planning Using Improved Ant Colony Optimization Algorithm through Bilateral Cooperative Exploration. In: 5th IEEE International Conference on Digital Ecosystems and Technologies, Daejeon, June 2011. Korea: IEEE, pp. 109–113.10.1109/DEST.2011.5936607]Search in Google Scholar
[9. Mac, T.T., Copot, C., Tran, D.T., De Keyser, R. (2017) A hierarchical global path planning approach for mobile robots based on multi-objective particle swarm optimization. Applied Soft Computing, 59, 68–76. DOI: 10.1016/j.asoc.2017.05.01210.1016/j.asoc.2017.05.012]Abierto DOISearch in Google Scholar
[10. Noreen, I., Khan, A., Habib, Z. (2016) Optimal Path Planning using RRT* based Approaches: A Survey and Future Directions. International Journal of Advanced Computer Science and Applications, 7(11), 97–107. DOI: 10.14569/IJACSA.2016.07111410.14569/IJACSA.2016.071114]Search in Google Scholar
[11. Paniagua, A.H., Bandera, J.P., Ruiz-de-Quintanilla, M., Bandera, A. (2018) Quad-RRT: A real-time GPU-based global path planner in large-scale real environments. Expert Systems with Applications, 99, 141v154. DOI: 10.1016/j.eswa.2018.01.03510.1016/j.eswa.2018.01.035]Abierto DOISearch in Google Scholar
[12. Samadi, M., Othman, M.F. (2013) Global Path Planning for Autonomous Mobile Robot using Genetic Algorithm. In: International Conference on Signal-Image Technology & Internet-Based Systems, Kyoto, December 2013. Japan: IEEE, pp. 726–730.10.1109/SITIS.2013.118]Search in Google Scholar
[13. Zhang, Y., Chen, H., Waslander, S.L., Gong, J., Xiong, G., Yang, T., Liu, K. (2018) Hybrid Trajectory Planning for Autonomous Driving in Highly Constrained Environments. IEEE Access, 6, 32800–32819. DOI: 10.1109/ACCESS.2018.2845448.10.1109/ACCESS.2018.2845448]Abierto DOISearch in Google Scholar
[14. Zhou, F., Gon, L. E. (2013) An Improved Path Planning for Mobile Robots. In: International Conference on Information Science and Cloud Computing Companion, Guangzhou, December 2013. China: IEEE, pp. 589–594.10.1109/ISCC-C.2013.43]Search in Google Scholar