1. bookVolumen 15 (2014): Edición 4 (December 2014)
Detalles de la revista
License
Formato
Revista
eISSN
1407-6179
Primera edición
20 Mar 2000
Calendario de la edición
4 veces al año
Idiomas
Inglés
Acceso abierto

Road Traffic Measurement and Related Data Fusion Methodology for Traffic Estimation

Publicado en línea: 19 Dec 2014
Volumen & Edición: Volumen 15 (2014) - Edición 4 (December 2014)
Páginas: 269 - 279
Detalles de la revista
License
Formato
Revista
eISSN
1407-6179
Primera edición
20 Mar 2000
Calendario de la edición
4 veces al año
Idiomas
Inglés

1. Anand, A., Ramadurai, G. and Vanajakshi, L. (2013). Data Fusion Based Traffic Density Estimation and Prediction, Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, accepted author version, DOI: 10.1080/15472450.2013.80684410.1080/15472450.2013.806844Search in Google Scholar

2. Bachmann, C. (2011). Multi-Sensor Data Fusion for Traffic Speed and Travel Time Estimation, MSc Thesis, TorontoSearch in Google Scholar

3. Böker, G., Lunze, J. (2002). Stability and performance of switching Kalman filters, International Journal of Control, 75(16/17): 1269-128110.1080/0020717021000023708Search in Google Scholar

4. Claudel, C. G., Bayen, A. M. (2008). Guaranteed bounds for traffic flow parameters estimation using mixed lagrangian-eulerian sensing. Proceedings of the 46th Annual Allerton Conference on Communication, Control, and Computing, Allerton, IL10.1109/ALLERTON.2008.4797618Search in Google Scholar

5. Chu, L., Oh, J., Recker, W. (2005). Adaptive Kalman filter based freeway travel time estimation, 84th TRB Annual Meeting, WashingtonSearch in Google Scholar

6. El Faouzi, N-E., Leung, H., Kurian, A. (2011). Data fusion in intelligent transportation systems: Progress and challenges - A survey, Information Fusion, 12(1): 4-10 DOI: 10.1016/j.inffus.2010.06.00110.1016/j.inffus.2010.06.001Search in Google Scholar

7. Guo, F., Krishnan R. and Polak, J. (2013). A computationally efficient two-stage method for short-term traffic prediction on urban roads, Transportation Planning and Technology, 36(1): 62-75, DOI:10.1080/03081060.2012.74572110.1080/03081060.2012.745721Search in Google Scholar

8. Gühnemann, A., Schäfer, R. P. Thiessenhusen, K. U., Wagner, P. (2004). Monitoring Traffic and Emissions by Floating Car Data, ITS Working Paper ITS-WP-04-07, Institute of Transport Studies, University of SydneySearch in Google Scholar

9. Herrera, J. C., Bayen, A. M. (2007). Traffic flow reconstruction using mobile sensors and loop detector data, 87th TRB Annual MeetingSearch in Google Scholar

10. Klein, L. A., Mills, M. K. (2006). Gibson, D. R. P.: Traffic Detector Handbook:Third Edition, Federal Highway Administration Turner-Fairbank Highway Research CenterSearch in Google Scholar

11. Küpper, A. (2005). Location-based Services. John Wiley & Sons, ISBN 978-0470-09231-6.10.1002/0470092335Search in Google Scholar

12. Liberzon, D. (2003). Switching Systems and Control, Birkhäuser, Boston10.1007/978-1-4612-0017-8Search in Google Scholar

13. Ludvig, Á., Tettamanti, T., Varga, I. (2012). Travel time estimation in urban road traffic networks based on radio signaling data. In: 14th International Conference on Modern Information Technology in the Innovation Processes of Industrial Enterprises, MITIP, Budapest,2012.10.24-2012.10.26. pp. 514-527. ISBN: 978-963-311-373-8Search in Google Scholar

14. Nokia Solutions and Networks OY, Vékony, N., Tettamanti, T, Varga, I., Ludvig, Á. (2014) Determining travel information (patent), Invention Publication No. WO/2014/023339012E00798 HU, http://patentscope.wipo.int/search/en/WO2014023339Search in Google Scholar

15. Mitchell, H. B. (2007). Multi-sensor data fusion: An introduction, New York, SpringerSearch in Google Scholar

16. Ng, G. W. (2003). Intelligent systems - fusion, tracking and control, Philadelphia: Research Studies Press Ltd.Search in Google Scholar

17. Qing, O. (2011). Fusing Heterogeneous Traffic Data: Parsimonious Approaches using Data-Data Consistency, PhD Thesis, Delft University of TechnologySearch in Google Scholar

18. Szeto, M. W. - Gazis D. C. (1972). Application of Kalman Filtering to the Surveillance and Control of Traffic Systems, Transportation Science, 6(4):419-439.10.1287/trsc.6.4.419Search in Google Scholar

19. Tettamanti T., Varga I. (2014). Mobile phone location area based traffic flow estimation in urban road traffic, Columbia International Publishing, Advances in Civil and Environmental Engineering, 1(1):1-15.10.2478/ttj-2014-0023Search in Google Scholar

20. Transport for London website: Developers’ Area http://www.tfl.gov.uk/businessandpartners/syndication/16492.aspxSearch in Google Scholar

21. Treiber, M., Helbing, D. (2002). Reconstructing the spatio-temporal traffic dynamics from stationary detector data, Cooperative Transportation Dynamics, 1(3):1-24.Search in Google Scholar

22. Vlahogianni, E., Karlaftis, M. G., Golias, J. C. (2014). Short-term traffic forecasting: Where we are and where we're going, Transportation Research Part C (2014), in press, DOI: 10.1016/j.trc.2014.01.00510.1016/j.trc.2014.01.005Search in Google Scholar

23. Wardrop, J. G. (1952). Some Theoretical Aspects of Road Traffic Research. Proceedings of the Institute of Civil Engineers, 1-2(9):325-378.Search in Google Scholar

24. Welch, G., Bishop, G. (1995). An Introduction to the Kalman Filter, University of North Carolina at Chapel Hill, TR95-041Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo