Acceso abierto

Nonlinear Elliptic Equations with Variable Exponents Anisotropic Sobolev Weights and Natural Growth Terms

  
01 oct 2024

Cite
Descargar portada

ARCOYA, D.—BOCCARDO, L.: Regularizing effect of the interplay between coefficients in some elliptic equations, J. Funct. Anal. 268 (2015), 1153–1166. Search in Google Scholar

BOCCARDO, L.—MURAT, F.: Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlinear Anal. 19 (1992), 581–597. Search in Google Scholar

BOCCARDO, L.—IMPARATO, P.—ORSINA, L.: Nonlinear weighted elliptic equations with Sobolev weights, Boll. Unione Mat. Ital. 15 (2022), no. 4, 503–514. Search in Google Scholar

BROWDER, F. E. : Nonlinear elliptic boundary value problems, Bull. Amer. Math. Soc. 69 (1963), 862–874. Search in Google Scholar

CRUZ-URIBE, D.—FIORENZA, A.—RUZHANSKY, M.—WIRTH, J.: Variable Lebesgue Spaces and Hyperbolic Systems. Advanced Courses in Mathematics - CRM Barcelona, Birkh¨auser, Basel, 2014. Search in Google Scholar

DIENING, L.—HARJULEHTO, P.— HÄSTÖ, P.– RUZICKA, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Math., Vol. 2017, Springer, Heidelberg, 2011. Search in Google Scholar

DU, Y. H.—GUO, Z. M.: Finite Morse index solutions of weighted elliptic equations and the critical exponents, Calc. Var. Partial Differential Equations 54 (2015), no. 3, 3161–3181. Search in Google Scholar

FAN, X.: Anisotropic variable exponent Sobolev spaces and −→ p (x)−Laplacian equations, Complex Var. Elliptic Equ. 56 (2011), no. 7–9, 623–642. https://doi.org/10.1080/17476931003728412 Search in Google Scholar

FAN, X.—ZHAO, D.: On the spaces Lp(x)(Ω) and W 1,p(x)(Ω), J. Math. Anal. Appl, 263 (2001), 424–446. Search in Google Scholar

FLORICA, C.ĈIRSTEA—YIHONG, DU: Isolated singularities for weighted quasilinear elliptic equations, J. Funct. Anal. 259 (2010), 174–202. Search in Google Scholar

GUO, Z. M.— WAN, F. S.: Further study of a weighted elliptic equation, Sci. China Math, 60 (2017), 2391–2406. Search in Google Scholar

HO, K.—SIM, I.: A-priori bounds and existence for solutions of weighted elliptic equations with a convection term, Adv. Nonlinear. Anal. 6 (2017), no. 4, 427–445. https://www.degruyter.com/document/doi/10.1515/anona-2015-0177/html Search in Google Scholar

MINTY, G. J.: On a “monotonicity” method for the solution of nonlinear equations in Banach spaces, in: Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 1038–1041. Search in Google Scholar

NACERI, M.: Existence results for anisotropic nonlinear weighted elliptic equations with variable exponents and L1 data, in: Proceedings of the Romanian Academy Series A-Mathematics Physics Technical Sciences Information Science, 23 (2022), no. 4, pp. 337–346. Search in Google Scholar

NACERI, M.: Anisotropic nonlinear weighted elliptic equations with variable exponents, Georgian Math. J. 30 (2023), no. 2, 277–285. Search in Google Scholar

NACERI, M.: Anisotropic nonlinear elliptic equations with variable exponents and two weighted first order terms. Filomat 38 (2024), no. 3, 1043–1054. Search in Google Scholar

NACERI, M.— BENBOUBKER, M. B.: Distributional solutions of anisotropic nonlinear elliptic systems with variable exponents: existence and regularity,Adv. Oper. Theory 7 (2022), article. 17, 1–34. https://doi.org/10.1007/s43036-022-00183-4 Search in Google Scholar

NACERI, M.: Anisotropic nonlinear elliptic systems with variable exponents, degenerate coercivity and Lq(·) data, Ann. Acad. Rom. Sci. Ser. Math. Appl. 14 (2022), no. 1–2, 107–140. Search in Google Scholar

NACERI, M.: Singular Anisotropic Elliptic Problems with Variable Exponents, Mem. Differ. Equ. Math. Phys. 85(2022), no. 8, 119–132. Search in Google Scholar

Idioma:
Inglés
Calendario de la edición:
3 veces al año
Temas de la revista:
Matemáticas, Matemáticas generales