Institute of Soil Science and Plant Cultivation – State Research Institute, Department of Soil Science Erosion Control and Land ProtectionPuławy, Poland
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Colliander A, Cosh MH, Misra S, Jackson TJ, Crow WT, Powers J, et al. Comparison of high-resolution airborne soil moisture retrievals to SMAP soil moisture during the SMAP Validation Experiment 2016 (SMAPVEX16). Remote Sensing of Environment. 2019;227:137–50. https://doi.org/10.1016/j.rse.2019.04.004.CollianderACoshMHMisraSJacksonTJCrowWTPowersJComparison of high-resolution airborne soil moisture retrievals to SMAP soil moisture during the SMAP Validation Experiment 2016 (SMAPVEX16). Remote Sensing of Environment. 2019;227:137–50. https://doi.org/10.1016/j.rse.2019.04.004.Search in Google Scholar
Colliander A, Cosh MH, Kelly VR, Kraatz S, Bourgeau‐Chavez L, Siqueira P, et al. SMAP detects soil moisture under temperate forest canopies. Geophysical Research Letters. 2020;47:e2020GL089697. DOI: 10.1029/2020GL089697.CollianderACoshMHKellyVRKraatzSBourgeau‐ChavezLSiqueiraPSMAP detects soil moisture under temperate forest canopies. Geophysical Research Letters. 2020;47:e2020GL089697. DOI: 10.1029/2020GL089697.Open DOISearch in Google Scholar
Colliander A, Cosh MH, Kelly V, Kraatz S, Bourgeau-Chavez LL, Siqueira P, et al. SMAP Validation Experiment 2019–2022 (SMAPVEX19–22): Detection of Soil Moisture Under Temperate Forest Canopy. In: IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2021). Brussels, Belgium: IEEE; 2021. p. 6992–5. DOI: 10.1109/IGARSS47720.2021.9553613.CollianderACoshMHKellyVKraatzSBourgeau-ChavezLLSiqueiraPSMAP Validation Experiment 2019–2022 (SMAPVEX19–22): Detection of Soil Moisture Under Temperate Forest Canopy. In: IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2021). Brussels, Belgium: IEEE; 2021. p. 6992–5. DOI: 10.1109/IGARSS47720.2021.9553613.Open DOISearch in Google Scholar
Li Y, Zhao Z, Wei S, Sun D, Yang Q, Ding X. Prediction of regional forest soil nutrients based on Gaofen-1 remote sensing data. Forests. 2021;12(11):1430. DOI: 10.3390/f12111430.LiYZhaoZWeiSSunDYangQDingX.Prediction of regional forest soil nutrients based on Gaofen-1 remote sensing data. Forests. 2021;12(11):1430. DOI: 10.3390/f12111430.Open DOISearch in Google Scholar
Segarra J, Buchaillot ML, Araus JL, Kefauver SC. Remote sensing for precision agriculture: Sentinel-2 improved features and applications. Agronomy. 2020;10(5):641. DOI: 10.3390/agronomy10050641.SegarraJBuchaillotMLArausJLKefauverSC.Remote sensing for precision agriculture: Sentinel-2 improved features and applications. Agronomy. 2020;10(5):641. DOI: 10.3390/agronomy10050641.Open DOISearch in Google Scholar
Debaene G, Bartmiński P, Siłuch M. In Situ VIS-NIR spectroscopy for a basic and rapid soil investigation. Sensors. 2023;23(12):5495. https://doi.org/10.3390/s23125495.DebaeneGBartmińskiPSiłuchM.In Situ VIS-NIR spectroscopy for a basic and rapid soil investigation. Sensors. 2023;23(12):5495. https://doi.org/10.3390/s23125495.Search in Google Scholar
Roudier P, Hedley CB, Lobsey CR, Viscarra Rossel RA, Leroux C. Evaluation of two methods to eliminate the effect of water from soil vis–NIR spectra for predictions of organic carbon. Geoderma. 2017;296:98–107. DOI: 10.1016/j.geoderma.2017.02.014.RoudierPHedleyCBLobseyCRViscarra RosselRALerouxC.Evaluation of two methods to eliminate the effect of water from soil vis–NIR spectra for predictions of organic carbon. Geoderma. 2017;296:98–107. DOI: 10.1016/j.geoderma.2017.02.014.Open DOISearch in Google Scholar
Morellos A, Pantazi XE, Moshou D, Alexandridis TK, Whetton RL, Tziotzios G, et al. Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy. Biosystems Engineering. 2016;152:104–16.MorellosAPantaziXEMoshouDAlexandridisTKWhettonRLTziotziosGMachine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy. Biosystems Engineering. 2016;152:104–16.Search in Google Scholar
Pietrzykowski M, Chodak M. Near infrared spectroscopy—A tool for chemical properties and organic matter assessment of afforested mine soils. Ecological Engineering. 2014;62:115–22. DOI: 10.1016/j.ecoleng.2013.10.025.PietrzykowskiMChodakM.Near infrared spectroscopy—A tool for chemical properties and organic matter assessment of afforested mine soils. Ecological Engineering. 2014;62:115–22. DOI: 10.1016/j.ecoleng.2013.10.025.Open DOISearch in Google Scholar
Ludwig B, Vormstein S, Niebuhr J, Heinze S, Marschner B, Vohland M. Estimation accuracies of near infrared spectroscopy for general soil properties and enzyme activities for two forest sites along three transects. Geoderma. 2017;288:37–46. DOI: 10.1016/j.geoderma.2016.10.022.LudwigBVormsteinSNiebuhrJHeinzeSMarschnerBVohlandM.Estimation accuracies of near infrared spectroscopy for general soil properties and enzyme activities for two forest sites along three transects. Geoderma. 2017;288:37–46. DOI: 10.1016/j.geoderma.2016.10.022.Open DOISearch in Google Scholar
Thomas F, Petzold R, Becker C, Werban U. Application of low-cost MEMS spectrometers for forest topsoil properties prediction. Sensors. 2021;21(11):3927. DOI: 10.3390/s21113927.ThomasFPetzoldRBeckerCWerbanU.Application of low-cost MEMS spectrometers for forest topsoil properties prediction. Sensors. 2021;21(11):3927. DOI: 10.3390/s21113927.Open DOISearch in Google Scholar
Thomas F, Petzold R, Landmark S, Mollenhauer H, Becker C, Werban U. Estimating forest soil properties for humus assessment—Is Vis-NIR the way to go? Remote Sensing. 2022;14:1368. DOI: 10.3390/rs14061368.ThomasFPetzoldRLandmarkSMollenhauerHBeckerCWerbanU.Estimating forest soil properties for humus assessment—Is Vis-NIR the way to go?Remote Sensing. 2022;14:1368. DOI: 10.3390/rs14061368.Open DOISearch in Google Scholar
Liu H, Wang Q, Peng J, Ji W, Li X, Viscarra Rossel RA. Development of a national VNIR soil-spectral library for soil classification and prediction of organic matter concentrations. Science China Earth Sciences. 2014;57(8):1701–10. DOI: 10.1007/s11430-013-4808-x.LiuHWangQPengJJiWLiXViscarra RosselRA.Development of a national VNIR soil-spectral library for soil classification and prediction of organic matter concentrations. Science China Earth Sciences. 2014;57(8):1701–10. DOI: 10.1007/s11430-013-4808-x.Open DOISearch in Google Scholar
Gholizadeh A, Viscarra Rossel RA, Saberioon M, Boruvka L, Kratina J, Pavlu L. National-scale spectroscopic assessment of soil organic carbon in forests of the Czech Republic. Geoderma. 2021;385:114832. DOI: 10.1016/j.geoderma.2020.114832.GholizadehAViscarra RosselRASaberioonMBoruvkaLKratinaJPavluL.National-scale spectroscopic assessment of soil organic carbon in forests of the Czech Republic. Geoderma. 2021;385:114832. DOI: 10.1016/j.geoderma.2020.114832.Open DOISearch in Google Scholar
Murphy PNC, Ogilvie J, Meng F-R, White B, Bhatti JS, Arp PA. Modelling and mapping topographic variations in forest soils at high resolution: A case study. Ecological Modelling. 2011;222(14).MurphyPNCOgilvieJMengF-RWhiteBBhattiJSArpPA.Modelling and mapping topographic variations in forest soils at high resolution: A case study. Ecological Modelling. 2011;222(14).Search in Google Scholar
Case BS, Meng F, Arp PA. Digital elevation modelling of soil type and drainage within small forested catchments. Canadian Journal of Soil Science. 2005;85(1):127– 37. DOI: 10.1093/forestry/cpaa010.CaseBSMengFArpPA.Digital elevation modelling of soil type and drainage within small forested catchments. Canadian Journal of Soil Science. 2005;85(1):127–37. DOI: 10.1093/forestry/cpaa010.Open DOISearch in Google Scholar
Talbot B, Rahlf J, Astrup R. An operational UAV-based approach for stand-level assessment of soil disturbance after forest harvesting. Scandinavian Journal of Forest Research. 2018;33:387–96. DOI: 10.1080/02827581.2017.1418421.TalbotBRahlfJAstrupR.An operational UAV-based approach for stand-level assessment of soil disturbance after forest harvesting. Scandinavian Journal of Forest Research. 2018;33:387–96. DOI: 10.1080/02827581.2017.1418421.Open DOISearch in Google Scholar
Nevalainen P, Salmivaara A, Ala-Ilomäki J, Launiainen S, Hiedanpää J, Finér L, et al. Estimating the rut depth by UAV photogrammetry. Remote Sensing. 2017;9:1279. DOI: 10.3390/rs9121279.NevalainenPSalmivaaraAAla-IlomäkiJLauniainenSHiedanpääJFinérLEstimating the rut depth by UAV photogrammetry. Remote Sensing. 2017;9:1279. DOI: 10.3390/rs9121279.Open DOISearch in Google Scholar
Pierzchała M, Talbot B, Astrup R. Estimating soil displacement from timber extraction trails in steep terrain: Application of an unmanned aircraft for 3D modelling. Forests. 2014;5:1212–23. DOI: 10.3390/f5061212.PierzchałaMTalbotBAstrupR.Estimating soil displacement from timber extraction trails in steep terrain: Application of an unmanned aircraft for 3D modelling. Forests. 2014;5:1212–23. DOI: 10.3390/f5061212.Open DOISearch in Google Scholar
James LA, Watson DG, Hansen WF. Using LiDAR data to map gullies and headwater streams under forest canopy: South Carolina, USA. CATENA. 2007;71(1):132–44. DOI: 10.1016/j.catena.2006.10.010.JamesLAWatsonDGHansenWF.Using LiDAR data to map gullies and headwater streams under forest canopy: South Carolina, USA. CATENA. 2007;71(1):132–44. DOI: 10.1016/j.catena.2006.10.010.Open DOISearch in Google Scholar
Lunt IA, Hubbard SS, Rubin Y. Soil moisture content estimation using ground penetrating radar reflection data. Journal of Hydrology. 2005;307(1-4):254–69.LuntIAHubbardSSRubinY.Soil moisture content estimation using ground penetrating radar reflection data. Journal of Hydrology. 2005;307(1-4):254–69.Search in Google Scholar
Campbell DMH, White B, Arp PA. Modeling and mapping soil resistance to penetration and rutting using LiDAR-derived digital elevation data. Journal of Soil and Water Conservation. 2013;68(6):460–73.CampbellDMHWhiteBArpPA.Modeling and mapping soil resistance to penetration and rutting using LiDAR-derived digital elevation data. Journal of Soil and Water Conservation. 2013;68(6):460–73.Search in Google Scholar
Wehr A, Lohr U. Airborne laser scanning—an introduction and overview. ISPRS Journal of Photogrammetry and Remote Sensing. 1999;54(2-3):68–82.WehrALohrU.Airborne laser scanning—an introduction and overview. ISPRS Journal of Photogrammetry and Remote Sensing. 1999;54(2-3):68–82.Search in Google Scholar
MacMillan RA, Martin TC, Earle TJ, McNabb DH. Automated analysis and classification of landforms using high-resolution digital elevation data: applications and issues. Canadian Journal of Remote Sensing. 2003;29(5):592–606.MacMillanRAMartinTCEarleTJMcNabbDH.Automated analysis and classification of landforms using high-resolution digital elevation data: applications and issues. Canadian Journal of Remote Sensing. 2003;29(5):592–606.Search in Google Scholar
Murphy PNC, Ogilvie J, Arp P. Topographic modelling of soil moisture conditions: a comparison and verification of two models. European Journal of Soil Science. 2009;60(1):94–109.MurphyPNCOgilvieJArpP.Topographic modelling of soil moisture conditions: a comparison and verification of two models. European Journal of Soil Science. 2009;60(1):94–109.Search in Google Scholar
Lidberg W, Nilsson M, Lundmark T, Ågren AM. Evaluating preprocessing methods of digital elevation models for hydrological modelling. Hydrological Processes. 2017;31(26):4660–8.LidbergWNilssonMLundmarkTÅgrenAM.Evaluating preprocessing methods of digital elevation models for hydrological modelling. Hydrological Processes. 2017;31(26):4660–8.Search in Google Scholar
Lidberg W, Nilsson M, Ågren A. Using machine learning to generate high-resolution wet area maps for planning forest management: A study in a boreal forest landscape. Ambio. 2020;49(2):475–86.LidbergWNilssonMÅgrenA.Using machine learning to generate high-resolution wet area maps for planning forest management: A study in a boreal forest landscape. Ambio. 2020;49(2):475–86.Search in Google Scholar
Mohtashami S, Eliasson L, Hansson L, Willén E, Thierfelder T, Nordfjell T. Evaluating the effect of DEM resolution on performance of cartographic depth-to-water maps for planning logging operations. International Journal of Applied Earth Observation and Geoinformation. 2022;108:102728. DOI: 10.1016/j.jag.2022.102728.MohtashamiSEliassonLHanssonLWillénEThierfelderTNordfjellT.Evaluating the effect of DEM resolution on performance of cartographic depth-to-water maps for planning logging operations. International Journal of Applied Earth Observation and Geoinformation. 2022;108:102728. DOI: 10.1016/j.jag.2022.102728.Open DOISearch in Google Scholar
Ring E, Ågren A, Bergkvist I, Finér L, Johansson F, Högbom L. A guide to using wet area maps in forestry. Skogforsk arbetsrapport. 2020;1051-2020.RingEÅgrenABergkvistIFinérLJohanssonFHögbomL.A guide to using wet area maps in forestry. Skogforsk arbetsrapport. 2020;1051–2020.Search in Google Scholar
Mattila U, Tokola T. Terrain mobility estimation using TWI and airborne gamma-ray data. Journal of Environmental Management. 2019;232:531–6.MattilaUTokolaT.Terrain mobility estimation using TWI and airborne gamma-ray data. Journal of Environmental Management. 2019;232:531–6.Search in Google Scholar
White B, Ogilvie J, Campbell DM, Hiltz D, Gauthier B, Chisholm HKH, et al. Using the cartographic depth-to-water index to locate small streams and associated wet areas across landscapes. Canadian Water Resources Journal/Revue Canadienne des Ressources Hydriques. 2012;37(4):333–47.WhiteBOgilvieJCampbellDMHiltzDGauthierBChisholmHKHUsing the cartographic depth-to-water index to locate small streams and associated wet areas across landscapes. Canadian Water Resources Journal/Revue Canadienne des Ressources Hydriques. 2012;37(4):333–47.Search in Google Scholar
Labelle ER, Hansson L, Högbom L, Jourgholami M, Laschi A. Strategies to mitigate the effects of soil physical disturbances caused by forest machinery: a comprehensive review. Current Forestry Reports. 2022;8(1):20–37.LabelleERHanssonLHögbomLJourgholamiMLaschiA.Strategies to mitigate the effects of soil physical disturbances caused by forest machinery: a comprehensive review. Current Forestry Reports. 2022;8(1):20–37.Search in Google Scholar
Kuglerová L, Hasselquist EM, Richardson JS, Sponseller RA, Kreutzweiser DP, Laudon H. Management perspectives on Aqua incognita: Connectivity and cumulative effects of small natural and artificial streams in boreal forests. Hydrological Processes. 2017;31(23):4238–44.KuglerováLHasselquistEMRichardsonJSSponsellerRAKreutzweiserDPLaudonH.Management perspectives on Aqua incognita: Connectivity and cumulative effects of small natural and artificial streams in boreal forests. Hydrological Processes. 2017;31(23):4238–44.Search in Google Scholar
Mohtashami S, Eliasson L, Jansson G, Sonesson J. Influence of soil type, cartographic depth-to-water, road reinforcement and traffic intensity on rut formation in logging operations: a survey study in Sweden. Silva Fennica. 2017;51(5).MohtashamiSEliassonLJanssonGSonessonJ.Influence of soil type, cartographic depth-to-water, road reinforcement and traffic intensity on rut formation in logging operations: a survey study in Sweden. Silva Fennica. 2017;51(5).Search in Google Scholar