Acceso abierto

Prospects for the Implementation of New Materials and Technologies in the Aerospace Industry


Cite

[1] Kandasamy Jayakrishna, Vishesh R. Kar, Mohamed T.H. Sultan & Murugan Rajesh, 2018, 1 – Materials selection for aerospace components, Ed.: Mohammad Jawaid, Mohamed Thariq, In Woodhead Publishing Series in Composites Science and Engineering, Sustainable Composites for Aerospace Applications, Woodhead Publishing, Pages 1-18, DOI: 10.1016/B978-0-08-102131-6.00001-3.10.1016/B978-0-08-102131-6.00001-3 Search in Google Scholar

[2] Huda, Z. & Edi, P., 2013, “Materials selection in design of structures and engines of supersonic aircrafts: A review”. Materials & Design, 46, pp. 552–560. DOI: 10.1016/j.matdes.2012.10.001.10.1016/j.matdes.2012.10.001 Search in Google Scholar

[3] Mitsuhiro, T. & Masashi, K., 2014, “Making lighter aircraft engines with titanium aluminide blades”. IHI Engineering Review, 47(1), pp. 10–13. Search in Google Scholar

[4] Mouritz, A.P., 2012, Introduction to aerospace materials, 1st ed., Woodhead Publishing, Suite, Philadelphia, USA.10.2514/4.869198 Search in Google Scholar

[5] Alderliesten R., 2018, Introduction to Aerospace Structures and Materials. Netherlands; pp. 41–58. DOI: 10.5074/t.2018.003.10.5074/T.2018.003 Search in Google Scholar

[6] Rolls-Royce. http://www.rolls-royce.com/about/technology/gas_turbinetech/. Accessed on 19-12-2012. Search in Google Scholar

[7] AMG. http://www.amg-nv.com/Innovation/Titanium-Aluminide/default.aspx. Accessed on 18-01-2013. Search in Google Scholar

[8] Schafrik, R. & Sprague, R., 2004, “Siga of gas turbine materials: Part I; Modern aeropropulsion is possible only because of the engine materials that have enabled continuous improvement in high-temperature operation, higher power, and reduced weight over the past 50 years. This is the first of a four-part series about development of gas turbine engine materials”. Advanced Materials & Processes, 162(3), pp. 33–36. Search in Google Scholar

[9] ‘P1100G – MTU AeroEngines’, available at http://www.mtu.de/engines/civil-aircraft-engines/narrowbody-and-regional-jets/pw1000g/, Accessed on 18-11-2015. Search in Google Scholar

[10] Clemens, H., Smarsly, W., Gütherand, V. and Mayer, S., 2015, “Advanced intermetallic titanium aluminides”, Proceedings of the 13th World Titanium Conference, San Diego, USA.10.1002/9781119296126.ch203 Search in Google Scholar

[11] Clemens, H. & Mayer, S., 2016, “Intermetallic titanium aluminides in aerospace applications – processing, microstructure and properties”. Materials at High Temperatures, 33(4-5), pp. 560–570, DOI: 10.1080/09603409.2016.1163792.10.1080/09603409.2016.1163792 Search in Google Scholar

[12] Dada, M., Popoola, P., Adeosun, S., & Mathe, N. R., 2019, “High entropy alloys for aerospace applications”. IntechOpen. DOI: 10.5772/intechopen.84982.10.5772/intechopen.84982 Search in Google Scholar

[13] Castellanos, S. D., et al., 2019, “Machinability of titanium aluminides: A review”. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 233(3), pp. 426–451. DOI: 10.1177/1464420718809386.10.1177/1464420718809386 Search in Google Scholar

[14] Hood, R., 2010, “The machinability of a gamma titanium aluminide intermetallic”. Doctoral dissertation, University of Birmingham. Search in Google Scholar

[15] Yanko T.B. & Datsenko R.B., 2018, “Method of dynamic high-speed casting of metal microspheres”, Pat. UA 129499. Search in Google Scholar

[16] Yanko T.B. & Datsenko R.B., 2019, “Device for continuous casting of metal wires of small diameters from the active metals”. Pat. UA 134397. Search in Google Scholar

[17] 2009, “High-temperature resistant aero engine coatings”, Aircraft Engineering and Aerospace Technology, 81(6). DOI: 10.1108/aeat.2009.12781fad.001.10.1108/aeat.2009.12781fad.001 Search in Google Scholar

[18] Hetmańczyk, M., Swadźba, L. and Mendala, B., 2007, “Advanced materials and protective coatings in aero-engines application”. Journal of Achievements in Materials and Manufacturing Engineering, 24(1), pp. 372–381. Search in Google Scholar

[19] Alqallaf, J., Ali, N., Teixeira, & Addali, A., 2020, “Solid Particle Erosion Behaviour and Protective Coatings for Gas Turbine Compressor Blades-A Review”. Processes, 8(8), pp. 984. DOI: 10.3390/pr8080984.10.3390/pr8080984 Search in Google Scholar

[20] Beardsley, M. Brad, 2008, “Potential use of quasicrystalline materials as thermal barrier coatings for diesel engine components”. Retrospective Theses and Dissertations. 15661. DOI: 10.31274/rtd-180813-16873.10.31274/rtd-180813-16873 Search in Google Scholar

[21] Sánchez, A., Garcia de Blas, F.J., Algaba, J.M. et al., 1998, Application of Quasicrystalline Materials As Thermal Barriers in Aeronautics and Future Perspectives of Use For These Materials. MRS Online Proceedings Library, 553, pp. 447–458. DOI: 10.1557/PROC-553-447.10.1557/PROC-553-447 Search in Google Scholar

[22] Kaiser, A. Shklover, V., SteurerIvan, W. & Vjunitsky, I., 2003, “Quasikristalline Legierungen und deren Verwendung als Beschichtung”. Pat. DE10358813A1. Search in Google Scholar

[23] Clossen-von Lanken Schulz, Michael Kadau, Kai, 2012, “Turbine blade and method for producing a turbine blade with high surface hardness”. Pat. DE102012219856A1. Search in Google Scholar

[24] Milman, Yu.V., Efymov, N.A., Goncharova, IV, 2012, “Quasicrystals – a new class of solids with unique physical properties” (in Russian). Electron microscopy and strength of materials: Sat. scientific tr. Kyiv: IPM NAS of Ukraine, 18, pp. 3–15. http://dspace.nbuv.gov.ua/handle/123456789/63528. Search in Google Scholar

[25] Airbus reveals new zero-emission concept aircraft. https://www.airbus.com/newsroom/press-releases/en/2020/09/airbus-reveals-new-zeroemission-concept-aircraft.html. Accessed on 21-09-2020. Search in Google Scholar

[26] “Fuel cell aircraft HY4 makes maiden flight”. https://www.theengineer.co.uk/fuel-cell-aircraft-hy4-makes-maiden-flight. The Engineer. 2016-09-30. Retrieved 2016-10-19. Search in Google Scholar

[27] Dmytrenko, O.E., Dubinko, V.I., Borysenko, V. & Irwin. K., 2020, “Synthesis of hydrogen storage materials in a Ti-Zr-Ni system using the hydride cycle technology during dehydrogenation by an electron beam in a vacuum”. Problems of atomic science and technique (PAST), 1(125), pp. 198–205.10.46813/2020-125-198 Search in Google Scholar

[28] Paserin, V., Marcuson, S., Shu, J. & Wilkinson, D.S., 2003, “The Chemical Vapor Deposition Technique for Inco Nickel Foam Production—Manufacturing Benefits and Potential Applications”. Cellular Metals and Metal Foaming Technology, Banhart, J., Fleck, N.A., Eds. MIT-Verlag: Berlin, Germany; pp. 31–38. Search in Google Scholar

[29] Farafonov, D.P., Migunov, V.P., Saraev, A.A. & Leschev, N.E., 2018, “Abradability and erosion resistance of seals in turbine engine air-gas channel” (in Russian). Proceedings of VIAM, 8(68). DOI: 10.18577/2307-6046-2018-0-8-70-80.10.18577/2307-6046-2018-0-8-70-80 Search in Google Scholar

[30] Paun, F., Gasser, S. & Leylekian, L., 2003, “Design of materials for noise reduction in aircraft engines”. Aerospace Science and Technology, 7(1), pp. 63–72.10.1016/S1270-9638(02)00006-8 Search in Google Scholar

[31] Scarponi, C., 2016, “Carbon-carbon composites in aerospace engineering”. Advanced Composite Materials for Aerospace Engineering. Processing, Properties and Applications, 2016, pp. 385–412. DOI: 10.1016/B978-0-08-100037-3.00013-4.10.1016/B978-0-08-100037-3.00013-4 Search in Google Scholar

[32] Soutis, C., 2005, “Carbon fiber reinforced plastics in aircraft construction”. Materials Science and Engineering: A, 412(1-2), pp. 171–176. DOI: 10.1016/j.msea.2005.08.064.10.1016/j.msea.2005.08.064 Search in Google Scholar

[33] Carbon Fiber in Aerospace Applications. https://www.pcmi-mfg.com/blog/carbon-fiber-in-aerospace-applications. Accessed on 19-12-2020. Search in Google Scholar

[34] Savage, G., 1993, Carbon-carbon Composites, Springer Science&Business Media, DOI: 10.1007/978-94-011-1586-5.10.1007/978-94-011-1586-5 Search in Google Scholar

[35] GE Redesigns Carbon Composite Blades for GE9X Engine. https://www.designnews.com/ge-redesigns-carbon-composite-blades-ge9x-engine. Accessed on 09-01-2021. Search in Google Scholar

eISSN:
2545-2835
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Engineering, Introductions and Overviews, other, Geosciences, Materials Sciences, Physics